E.6

DAVID J. CREAGAN, JR. GEORGE W. PHILLIPS TIM J. EMMITT JAMES R. GANNON ROBERT A. SUBKOWSKY THOMAS H. VARNER DOUGLAS A. LINDSAY THOMAS E. BRABEC JOHN W. LOSEMAN

FAX NUMBER

Lewis, Overbeck & Furman

LAW OFFICES

135 SOUTH LA SALLE STREET SUITE 2300

CHICAGO, ILLINOIS 60603-4274

TELEPHONE (312) 580-1200

WRITER'S DIRECT LINE

(312) 580-1240

JOSEPH R. JEFFERY CHRISTINE S. LEE F. RICHARD SKWERES

OF COUNSEL JOHN H. OVERBECK, JR. PAUL L. FRETER

Direct Internet Number Temmitta lewisoverbeck.com

EPA Region 5 Records Ctr.

February 5, 2002

File: GEN-7353

Mr. Tom Krause Illinois Environmental Pollution Agency Bureau of the Land 1001 N. Grand Ave. Springfield, IL 62794

Re: Hydrogeologic Investigation Reports regarding 2537 Curtiss St., Downers Grove, Illinois

Dear Mr. Krause:

Pursuant to our telephone conversation of January 29, 2002, I am writing to forward to you a Hydrogeologic Investigation Report dated December 7, 2001 and an Additional Hydrogeologic Investigation Report dated January 31, 2002. From our prior conversation, I understand that you have in your possession copies of the Phase I Environmental Site Assessment dated November 30, 2000 and the Subsurface Soil Investigation Report dated July 31, 2001 regarding the subject premises.

The Conclusions found in the Additional Hydrogeologic Investigation Report beginning on page 13 confirm what we had orally been told and which I relayed to you to the effect that the contaminants are in a highly confined area, but cannot scientifically be determined to have migrated onto the subject premises due to the highly variable geology of the site. Further, the lack of contaminants in the soil samples above the groundwater where the contaminants were found indicates that the site is not a generator. The major conclusion, however, is that the site is in compliance with Tier 1 Class II ROs and that no further remediation is necessary (see last bullet point on page 14).

FEB n & 2002

Lewis, Overbeck & Furman

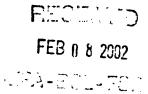
I would very much appreciate it if you could let me know after you have had an opportunity to review the enclosures, so I ask that you call me so that we can discuss the situation further.

Cordially yours,

LEWIS, OVERBECK & FURMAN

Tim J. Emmitt

TJE:ssTJE104703; 88821-001


Enclosures

cc: Richard A. Marvil (w/o enclosures)

PHASE II HYDROGEOLOGIC INVESTIGATION REPORT FORMER AMES SUPPLY DOWNERS GROVE, ILLINOIS

Prepared For:
White Lake Building Corporation
2537 Curtiss Street
Downers Grove, Illinois 60515

December 7, 2001 EGSL Project Number: 011332

TABLE OF CONTENTS

INTRO	ODUCTION 1
BACK	GROUND AND PREVIOUS INVESTIGATIONS 1
Site	Location and Description
Prev	vious Investigations2
HYDR	ROGEOLOGIC INVESTIGATION FIELD PROCEDURES 3
Mor	nitoring Well Installation
	nitoring Well Elevation Survey4
	nitoring Well Development and Groundwater Sample Collection
	ontamination
Cha	in of Custody5
	ROGEOLOGIC INVESTIGATION RESULTS6
	Geology
	ional Geology
_	Hydrogeology
	Analytical Results
	undwater Analytical Results
	LUSIONS
	MMENDATIONS
	RENCES 12
Figures	<u>5</u>
1	Site Location
2	Site Layout
3	Monitoring Well Locations
4	Shallow Groundwater Potentiometric Surface Map
•	Silano ii Ground valor i otoliko, med io Sariato i viap
<u>Tables</u>	
1	Monitoring Well and Groundwater Elevation Data
2	Summary of Analytical Results for VOCs in Soil Compared to TACO Tier 1 ROs
3	Summary of Analytical Results for SVOCs in Soil Compared to TACO Tier 1 ROs
4	Summary of EGSL Analytical Results for VOCs in Groundwater Compared to TACO Tie
7	1 ROs
5	Summary of EGSL Analytical Results for VOCs in Groundwater Compared to TACO Ties
,	1 ROs
Tabe	1 KOS
<u>Tabs</u>	
1	Figures
2	Soil Boring Logs and Monitoring Well Construction Logs
3	
3 4	Groundwater Elevation Data
	Soil Analytical Results and Laboratory Reports
5	Groundwater Analytical Results and Laboratory Reports

INTRODUCTION

Environmental Group Services, Ltd. (EGSL) has completed a Phase II Hydrogeologic Investigation for the above referenced property (Site). This investigation was completed in response to a concern by the potential buyer (The Illinois State Toll Highway Authority (Tollway) regarding known groundwater contamination in the local area. As a result, the Tollway obtained Wight & Company (Wight), Downers Grove, Illinois as their environmental consultant, who subsequently prepared a work plan to investigate the shallow groundwater beneath the site. As requested by White Lake Building Corporation (Client), EGSL carried out a Phase II Groundwater Investigation in accordance with Wight's Groundwater Investigation Work Plan. The purpose of this investigation was to determine the possibility of groundwater contamination associated with former uses at the property. The contaminants of concern (COCs) are volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs)

BACKGROUND AND PREVIOUS INVESTIGATIONS

Site Location and Description

Ę

The Site is approximately 135,000 square feet (3.1 acres) and is located in a commercial and industrial area situated at 2537 Curtiss Street between in Downers Grove, Illinois. The Site is currently vacant, which houses a 67,000 square foot warehouse building. The building contained an office area to the south and warehouse area in the remaining portion. According to records, the center of the warehouse area was used for manufacturing and contained a trichloroethene (TCE) degreaser for parts and tool washing. The wastes generated at the warehouse was stored in drums throughout the facility. The drums were moved to a primary staging area prior to disposal off-site. At the northeast corner of the facility is a raised loading dock area covered by concrete pavement and there is also a small loading area at the southwest corner of the building. The rest of the property to the west and south (except for 10-foot easements) is covered by asphalt pavement. The two easements are heavily wooded. The remaining property to the north is grass covered and the 10-foot easement to the east is heavily wooded. The Site Location is shown on Figure 1 and the general Site Layout is shown on Figure 2, found at Tab 1.

The surrounding area is all commercial/residential properties. Directly to the north across Curtiss Street is Dyngear, to the west is Fusibond Piping Sytems, to the west is Scott, Inc. and to the south are commercial complex units.

Previous Investigations

EGSL completed a Phase I Environmental Site Assessment Report dated November 30, 2000 and subsequently completed two subsurface soil investigations (July 31, 2001 and August 31, 2001. Based on the results of the Phase I and first Phase II investigations, Wight recommended to the Tollway that a second soil sampling investigation be completed. EGSL mobilized to the site and collected additional soil samples inside of the warehouse. The soil sampling results indicated that ethylbenzene, tetrachloroethene and 1,1,1-trichloroethene were detected in limited areas at the site above laboratory detection limits; however, the concentrations were below the Illinois Environmental Protection Agency (IEPA) Remediation Objectives (ROs) for Industrial/Commercial Properties based upon the Tiered Approach to Corrective Action Objectives (TACO); 35 Ill. Adm. Code Part 742, February 18, 1997, amended August 15, 2001.

Subsequent to the investigations, Wight received information from the IEPA indicating that potable supply wells in the Downers Grove Industrial Park were contaminated with various compounds. Area. The subject site is located in the center of the industrial park, consequently, the IEPA is gathering data to assess potentially responsible parties (PRPs). As a resul, the Tollway has a concern regarding the potential liability associated with the contaminant plume in the Industrial Park. Therefore, to assess this potential groundwater liability, Wight prepared a Groundwater Investigation Work Plan to complete six monitoring wells to maximum depths of 40 feet below ground surface (bgs) and collect groundwater samples for the analysis of VOCs and SVOCs..

HYDROGEOLOGIC INVESTIGATION FIELD PROCEDURES

Monitoring Well Installation

Based on Wight's Work Plan, EGSL installed six (6) monitoring wells (MW-1 through MW-6) throughout the site at various locations to determine if shallow groundwater was impacted from previous operations at the facility. Two of the monitoring well locations (MW-5 and MW-6) were changed from the original plan due to the heavy wooded area to the east and the presence of underground utilities. The additional monitoring well borings were completed using a Diedrich D-50 truck-mounted drill rig equipped with 4 1/4-inch I.D. hollow-stem augers. Soil samples were collected continuously every two feet from the ground surface to the terminus of each of the borings (23 to 39 feet bgs) using a split-spoon sampler (ASTM D1586). No drilling fluids were introduced into any of the boreholes. Monitoring Well locations are shown on Figure 3, at Tab 1.

All soil samples were split and placed into two sealed plastic bags and was labeled identically. One of the samples was placed into a chilled cooler and the other sample was allowed to volatilize for field-testing with the Photovac® flame ionization detector (FID). The FID is used to screen each soil sample from each probe location for relative concentrations of volatile organic compounds (VOC). The utilization of a field-screening device provided immediate on-site data for use in the assessment of the Site. FIDs are designed to provide qualitative data on VOCs and do not provide separation of the contaminants into individual constituents. Field screening was performed utilizing the "headspace" technique. Soil samples were only collected to determine if any of the COCs were present in the soil for potential disposal of the soil cuttings. The identical split soil sample with the highest FID reading (MW-3, 5') and a composite soil sample (C-1) containing soil from several of the borings (MW-1/3', MW-1/17', MW-2/3', MW-3/3' and MW-4/26') were submitted to the laboratory for analytical testing of VOCs and SVOCs. A QA/QC trip blank was also submitted for anlaysis.

The soil samples targeted for laboratory analysis of VOCs were packed into new, laboratory supplied, 40-milliliter glass vials pre-preserved in sodium bisulfate and methanol in accordance with EPA Method 5035. The SVOC samples were packed into separate non-preserved, 4-ounce, wide-mouth jars with Teflon-lined caps. The containers were supplied by Great Lakes Analytical of Buffalo Grove, Illinois. Samples were stored on ice during soil sample collection activities and while being transported to the laboratory. Standard Chain-of-Custody procedures were followed to track the samples.

The six monitoring wells were installed to depths of 21.52 to 34.77 feet bgs with the well screen in each well positioned to intercept the interpreted water table surface. Well construction materials consisted of 2-inch diameter PVC riser pipe and 10-slot (0.010 inch) PVC well screen which were placed through the inside of the hollow stem augers to the bottom of each boring. The annular space around each

monitoring well was backfilled with clean filter sand to approximately 2 feet above the well screen while simultaneously removing the augers from the ground. An annular seal consisting of at least one to two feet of bentonite pellets was placed above the sand pack and hydrated with distilled water. Hydrated bentonite chips were used to backfill the remaining annular space to a top depth of one to two ft bgs, followed by concrete to the ground surface. Each monitoring well was completed with a water-tight cap and three of the wells (MW-1 through MW-3) were completed with steel flush-mounted protective cover and the others with stick-up protective casings. Soil Boring Logs and Monitoring Well Construction Diagrams are included at Tab 2.

Monitoring Well Elevation Survey

The elevations of the top of the PVC casing and ground surface were determined for each well by EGSL. The elevations of the wells were established relative to an arbitrary site benchmark and other temporary benchmarks by a vertical leveling survey. The depth to water and the elevations of the top of casing were used to calculate the water elevation in each well.

Monitoring Well Development and Groundwater Sample Collection

On November 13, 2001, four of the six monitoring wells (MW-1, MW-2, MW-3 and MW-6) were developed in order to remove sediment introduced into the well and/or sand pack by drilling activities. Development of the monitoring wells was accomplished by bailing and surging using a clean, dedicated, disposable polyethylene bailer and new polypropylene rope for each well. Each well was bailed dry, which included the groundwater situated within the filter pack surrounding the well. Wells MW-4 and MW-5 were not developed at this time because they were dry.

On November 16, 2001, groundwater samples were collected from the four monitoring wells. Approximately 0.5 to 1.0 gallon of additional water was purged from each well prior to collecting the samples. Purging and sampling was accomplished using the dedicated disposable bailers. Groundwater samples were placed into laboratory supplied containers (pre-preserved 40 ml vials for VOCs and 1-liter Amber for SVOCs) and kept cool until transfer to the laboratory. A duplicate sample from MW-2 and a laboratory supplied trip blank were submitted for analysis for QA/QC measures. The duplicate sample was labeled separately so that the lab would not be able to identify it as a duplicate. A completed chain of custody form accompanied the samples to the laboratory.

Water levels in the monitoring wells at the site were collected during development activities and prior to sampling on November 16, 2001.

Based on the groundwater results of the four monitoring wells (discussed later in this report), EGSL returned to the site on November 30, 2001 and there was approximately 7-8 inches of water in

monitoring well MW-4; therefore, a water sample for VOC analysis (not enough water for SVOCs) was collected from this location and submitted for 24-hour turnaround time. Well MW-5 was still dry at this time. Based on the slow recharge at MW-4, it is believed that the groundwater level has not fully recharged; therefore, the level was not recorded.

Decontamination

Cross-contamination during soil sampling and monitoring well installation was minimized by using an Alconox detergent wash and tap water rinse to decontaminate the sampling tools between each probe. Also, other sampling equipment and measurement tools were hand washed with an Alconox detergent wash and rinsed three times with distilled water between soil sample intervals. The tools were then placed on clean and decontaminated surfaces. The augers and associated drilling tools from the drill rig were decontaminated using a high-pressure steam-cleaner.

Disposable latex gloves were worn during the collection of soil and groundwater sampling events and were changed between samples. All excess soil cuttings from the monitoring well installation activities were stockpiled on and covered with visqueen pending analysis of the soil samples. The soil was stockpiled at the southeast corner of the site so that it can be spread in the wooded area if the results indicate non-detectable levels of the COCs.

Chain of Custody

Chain of custody (C-O-C) forms were completed and signed by all parties obtaining, transporting and accepting the soil samples at the laboratory. The jars were properly labeled with sample I.D., date, time, sample location, sampler, and analysis and directly corresponded to the chain of custody form. The C-O-C's were kept with the samples at all times.

HYDROGEOLOGIC INVESTIGATION RESULTS

Site Geology

The subsurface geology across the Site consists some fill soil overlying glacial till. The fill soils were found at MW-1, MW-2, MW-3 and MW-6 and consisted primarily of interbedded gravel, sand and gravel, and clay extending approximately 4 to 6.5 feet bgs. There was no fill present at the other boring locations. The native tills primarily consisted of brown and gray lean clay underlain by interbedded layers of silt, sandy silt, sand and gravel clay and cobbles. The cobble zones (interbedded with sand and some clay) were predominant at MW-3 and MW-4 and were approximately 7 feet thick between 7.5 and 18.5 feet bgs. This zone was also present at MW-5 and MW-6; however was not as thick. The geology below the site was highly variable and it appeared that none of the sand, gravel and silt seams (potential water-bearing units) were connected across the site. The only consistent potential water-bearing unit was the cobble zone, which did not contain significant saturation (was predominately damp) within the strata. For more detail regarding the geologic findings at the site, refer to the boring logs at Tab 2.

Shallow groundwater was generally encountered during drilling between 13 feet bgs (MW-2) and 29.5 feet bgs (MW-4).

Regional Geology

The regional geology in the vicinity of the site consists of surficial soils, glacial sediments, and glacial outwash overlying carbonate bedrock (dolomite). The native glacial deposits at the site consists of Keeneyville Drift, which are karne-moraine drifts of the Valparaiso Morainic System. These karne moraines (defined as a hill or irregular ridge of gravel or sand deposited in contact with glacier ice), consist of knobs, kettles swamps and lakes locally containing outwash plains of sand, gravel and clayey most likely within the Wadsworth Till Member (Willman, 1975).

Based on Illinois State Geological Survey documentation describing regional geology and according to the Potential for Contamination of Shallow Aquifers in Illinois, Berg Circular 532 (Berg, 1984) including Potential for Contamination of Shallow Aquifers from Burial of Municipal Wastes, Plate 1 (Berg, 1984), the site is likely classified as category E, uniform, relatively impermeable silty or clayey till at least 50 feet thick: no evidence of interbedded sand and gravel.

The uppermost bedrock below the glacial drift is the Silurian-age Niagara series Racine Dolomite (Limestone) found between 80 and 120 feet bgs locally. The Racine Formation is largely a medium gray, fine-to medium-grained dolomite with textures that vary from dense to vesicular to vuggy. It is the uppermost Silurian formation and has a maximum thickness of about 300-ft. Below the Silurian Dolomite at a depth of approximately 500 ft is the Cincinnatian Series of the Ordovician System, which

is composed of argillaceous shale and acts as a barrier between the shallow and deep aquifers (Willman, 1975).

Site Hydrogeology

An attempt was made to delineate the shallow water-bearing zones across the site. It appears that the shallow groundwater is contained within the thinner (average of 0.5 to 1.5 feet) silt, sandy silt, silty sand and sand and gravel seams that are interbedded within the glacial clay soil. As stated earlier, the shallow groundwater was encountered between 13 and 29.5 feet bgs during drilling and at MW-4 and MW-5, the water-bearing zone appeared to be in the clay containing thin seams of wet silt, sand and gravel at deeper depths (25 to 35 feet bgs). The monitoring wells were placed such that the screen section intercepted these potential water-bearing zones.

Water levels in the monitoring wells at the site were collected on November 13, 2001 prior to development activities and again on November 16, 2001 prior to collection of groundwater samples. The November 16 water levels were used to determine elevations and direction of groundwater flow to allow proper recharge after removing much of the silt out of the wells. Monitoring wells MW-4 and MW-5 were both dry during both measuring events and was also dry one week later. The water table was observed to be at depths ranging from 7.73 ft bgs (elev. 92.33 ft) at MW-2 to 24.75 ft bgs (elev. 75.57 ft) at MW-1 during the first measurement and 7.97 ft bgs (elev. 92.09 ft) at MW-2 to 23.76 ft bgs (elev. 76.56 ft) at MW-1. Monitoring well and water level elevation data are presented in Table 1, at Tab 3.

Based on groundwater elevations at the Site, it appears that the shallow water-bearing units may not be continuously connected across the site. At MW-2, there was an upper layer of silty sand directly below the fill soil at approximately 6.5 feet bgs where perched water was encountered and an attempt was made to seal this layer off from the strata below. It appeared that the shallow water-bearing zone was situated between 12.5 and 22 feet bgs. However, based on the water levels at MW-2, there appears to be a hydraulic connection between the perched zone and the first shallow water-bearing zone. It does appear that the remaining three wells (MW-1, MW-3 and MW-6) may have some hydraulic connection; therefore, these three wells were used to construct a groundwater contour map (Figure 4, Shallow Groundwater Potentiometric Surface Map, Tab 1) to indicate relative flow of the shallow groundwater. Based on the contour map, it appears that the shallow groundwater generally flows towards the southwest at an average hydraulic gradient of 0.019 ft/ft.

As stated previously, on November 30, 2001 and there was approximately 7-8 inches of water in monitoring well MW-4 and a groundwater sample was collected for analysis and due to the known geology and the slow recharge, it is believed that the groundwater level was not fully recharged and consequently, the level was not recorded.

Soil Analytical Results

The analytical test results of the two soil samples (C-1 and MW-3/5') submitted for analysis indicated that none of the VOCs and SVOCs were detected above the laboratory detection limits. Therefore, the COCs were not present in the soil exceedingo to the Remediation Objectives (ROs) derived from the Illinois Environmental Protection Agency (IEPA) "adopted" IAC 742, Tiered Approach to Corrective Action Objectives (TACO), Tier I, for Industrial/Commercial Properties, dated June 5, 1997, amended August 15, 2001. Consequently, the soil cuttings do not need to be treated or disposed of off-site. The VOC results are presented at Table 2 and the SVOCs are shown on Table 3, both found at Tab 4. The laboratory reports are also presented at Tab 4.

Groundwater Analytical Results

The groundwater analytical test results for VOCs are summarized in Table 4 and indicate that tetrachloroethene (PCE) exceeded the TACO Tier 1 Class I & II Remediation Objectives (ROs) for the Groundwater Ingestion Route in sample MW-3 at a concentration of 0.126 milligrams/Liter (mg/L). Trichloroethene (TCE) exceeded the Class I Groundwater Ingestion RO in sample MW-3 at a concentration of 0.0078 mg/L. The compounds 1,1-dichloroethane, cis-1,2-dichloroethene, and 1,1,1-trichloroethane were also present in sample MW-3; however, were below the Class I & II ROs. None of the SVOCs were detected above the laboratory limits. The groundwater SVOC results are summarized on Table 5 and both tables and laboratory reports are presented at Tab 5.

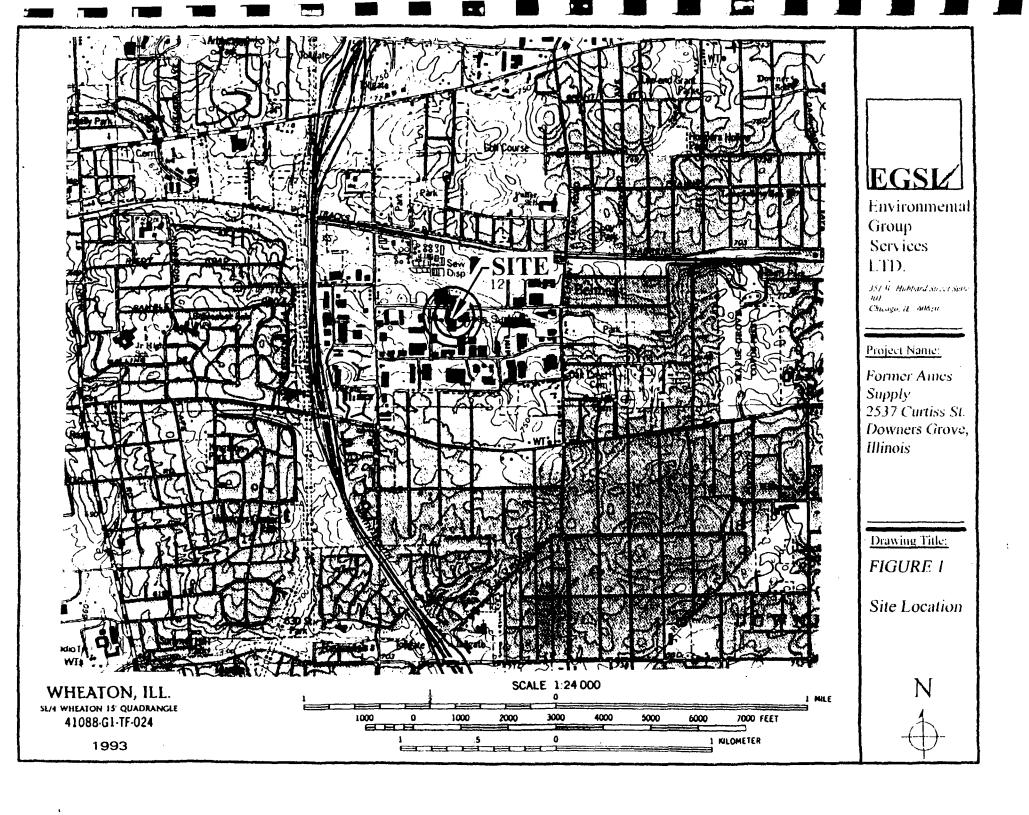
Based on the above results, EGSL later (November 30, 2001) returned to the site and discovered approximately 7-8 inches of water in monitoring well MW-4. Consequently, a groundwater sample was collected for VOC analysis. In addition, a second verification groundwater sample was collected from well MW-3 and submitted to the project laboratory for VOC analysis. As a QA/QC measure, the sample was labeled PW-10 so that the lab was not aware that the sample was collected from MW-3. The results (shown on Table 4) of MW-4 indicated that none of the VOCs were detected above the laboratory limits at this location. The results of sample PW-10 (MW-3) indicated that similar concentrations of the same VOCs as the initial sample were present (refer to Table 4).

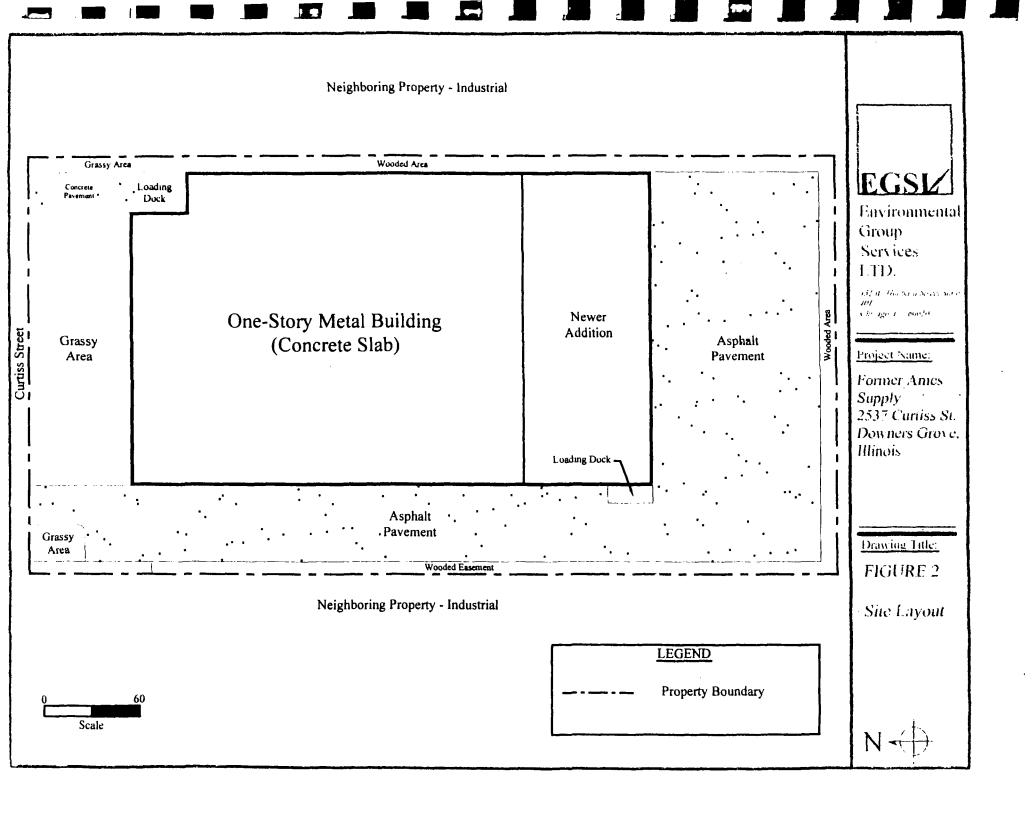
CONCLUSIONS

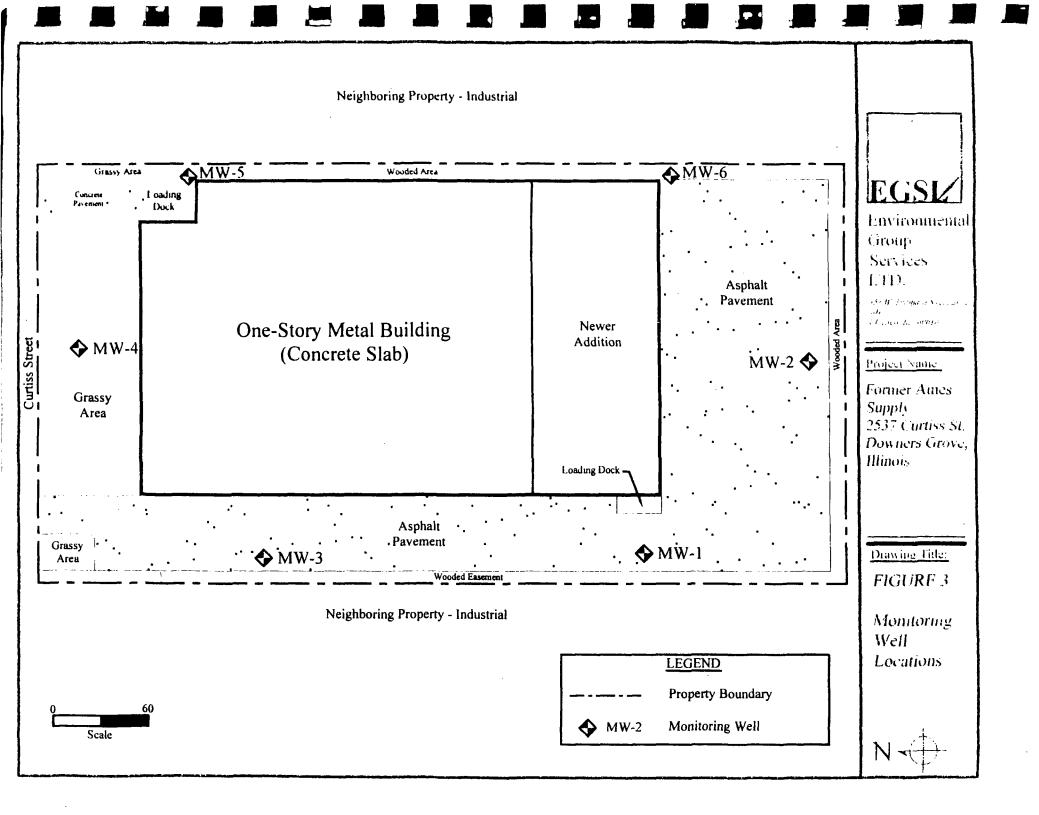
Based on the results of the two previous investigations and this hydrogeological investigation, the following conclusions can be made:

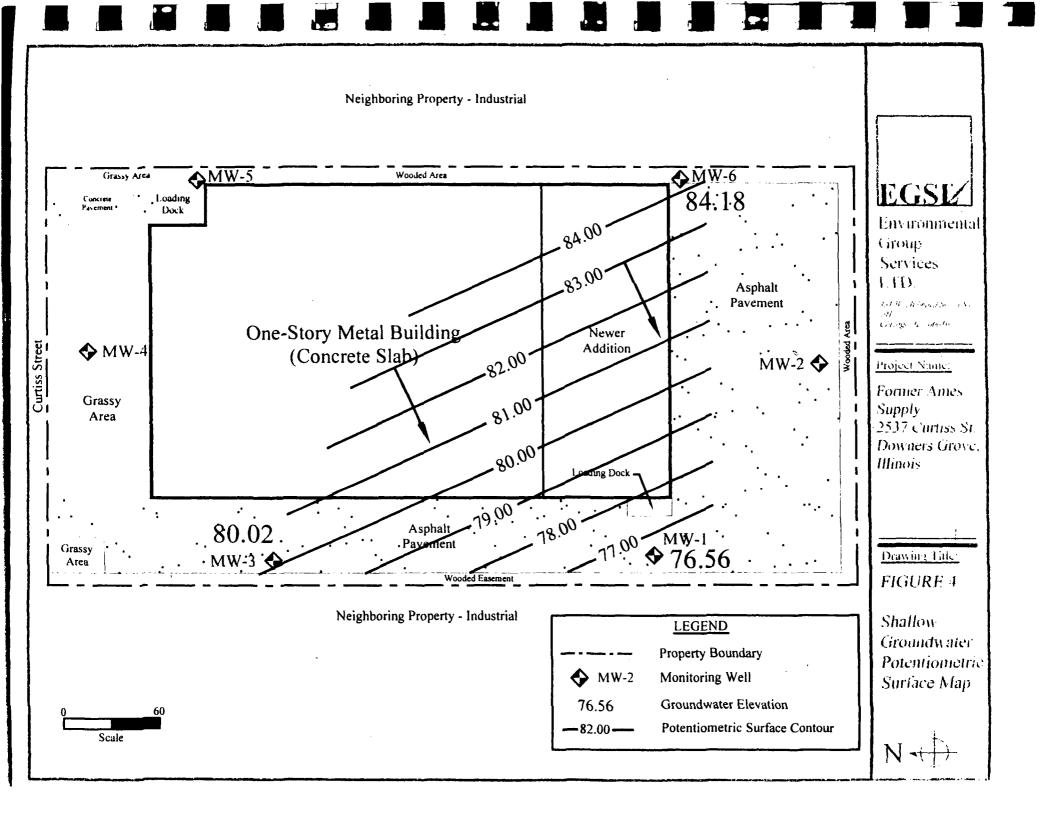
- As previously concluded during the previous two investigations conducted at the site, none
 of the COCs were present in the subsurface soil at the site exceeding the TACO Tier 1
 ROs.
- The subsurface geology across the Site generally consisted of limited amounts of fill soil overlying glacial till. The native tills primarily consisted of brown and gray lean clay underlain by interbedded layers of silt, sandy silt, sand and gravel clay and cobbles. The geology below the site was highly variable and it appeared that none of the sand, gravel and silt seams (potential water-bearing units) were entirely connected across the site.
- It appeared that the shallow groundwater is contained within the thinner (average of 0.5 to 1.5 feet) silt, sandy silt, silty sand and sand and gravel seams that are interbedded within the glacial clay soil. Shallow groundwater was encountered between 13 and 29.5 feet bgs during drilling and at MW-4 and MW-5, the waterbearing zone appeared to be in the clay containing thin seams of wet silt, sand and gravel at deeper depths of 25 to 35 feet bgs. However, the wells were dry during several water level measurement events. This indicates that the hydraulic conductivity in these areas is much lower thus resulting in a much lower yield. There were less water-bearing units (sand, silt and gravel) at these two locations and it is unlikely that there is any hydraulic connection to the other areas of the site. At monitoring well MW-2, an upper layer of silty sand directly below the fill soil (approximately 6.5 feet bgs) contained perched water and even though an attempt was made to seal this layer off from the strata below, there later appeared to be a hydraulic connection to the upper water-bearing unit Therefore, it was concluded that the perched groundwater at MW-2 was not likely connected to the other water-bearing units at the other well locations; therefore was not used to determine groundwater flow. In addition, since it was suspected that the groundwater had not fully charged at MW-4, this level was also not used. It does appear however, that the remaining three wells (MW-1, MW-3 and MW-6) may have some hydraulic connection; therefore, these three wells were used to construct a groundwater contour map, which indicated that the shallow groundwater at the site generally flows towards the southwest at an average hydraulic gradient of 0.019 ft/ft. Based on the known geology, the approximate recharge rate of the groundwater and the lack of overall connection of the groundwater across the entire site, it is believed that less than 150 gallons per day of the shallow groundwater would be produced in a single twelve-inch borehole at the site and that the hydraulic conductivity would be less than 1 x 10⁴ centimeters/second (cm/sec): therefore; it is concluded that the shallow groundwater is likely Class II (in accordance with 35 Ill Adm. Code Part 620).

- None of the VOCs and SVOCs were detected above the laboratory detection limits in the
 two soil samples (C-1 and MW-3/5') submitted for analysis; therefore, it is concluded that
 the soil cuttings that were stockpiled on site can be spread on the property in the wooded
 area on the east side.
- The groundwater analytical test results indicated that two of the VOCs (PCE and TCE) were detected above the TACO Tier 1 Groundwater Ingestion ROs at one monitoring well location (MW-3); PCE was above Class I & II and TCE was above the Class I RO. Based on the proximity of monitoring well MW-3, the fact that the soil sample submitted from this boring did not show any of the COCs present and no other elevated FID readings were encountered to suggest the soil was impacted, it is concluded that the VOC impact to the groundwater at the site is limited to this general area and that the source of the contamination is likely from an off-site source. Given that the shallow groundwater is likely Class II and not a potable drinking water source, the environmental impact is minimal and there is likely no risk to any potential receptors (human); however, additional work may need to be completed to verify this conclusion. Also, based on the results, it appears that the previous operations at the site did not likely contribute to the local groundwater contamination within the Downers Grove Industrial Park area.


RECOMMENDATIONS


Based on the conclusions of the investigations at the site and in order to confirm the source of the contamination found in the shallow groundwater at the site, the following actions are recommended:


- Complete additional soil borings in the vicinity of monitoring well MW-3 to demonstrate if
 the geology in that particular area is hydraulically connected to a potential off-site source.
 An attempt should be made to delineate any sand, gravel, silt or other water-bearing units
 and determine their connection in the general location of MW-3. For the purposes of this
 additional phase of investigation it is recommended to complete any additional borings onsite
- Install three to four additional monitoring wells in both the upgradient and downgradient directions. The exact location of the wells should be determined from the additional soil borings that will first be completed. The wells should be installed within similar stratigraphic units and approximate elevations as MW-3. The new monitoring wells should be sampled for VOCs (SVOCs are not necessary since they have not been identified as COCs at the site) and the elevations tied into the existing monitoring well network in order to better define shallow groundwater flow direction. Several hydraulic conductivity tests should also be completed so that the Class of groundwater can be verified (currently suspected to be Class II).


REFERENCES

- Berg, Richard C., et.al, 1984. Potential for Contamination of Shallow Aquifers in Illinois, Illinois Dept. Of Energy and Natural Resources, Geological Survey Division, Circular 532.
- Berg, Richard C., et.al, 1984. Potential for Contamination of Shallow Aquifers in Illinois, Illinois Dept. Of Energy and Natural Resources, Geological Survey Division, Plate 1.
- Illinois Pollution Control Board, 1991. Groundwater Quality Standards, 35 ILL. Adm. Code Part 620.
- Illinois Pollution Control Board, 1997. Tiered Approach To Corrective Action Objectives (TACO), 35 ILL. Adm. Code Part 742, amended August 15, 2001.
- Willman, H.B. et. al. 1975. Handbook of Illinois Stratigraphy. Illinois State Geological Survey Bulletin 95.

J	Job Number: 011332 Boris			Boring Number	ring Number: MW-1				Page of		
A	Address: Former Ames Supply 2531 Curtiss Street Downers Grove, IL Boring Location See S				Boring Location See Sit	e Diagram			Date:	: 11-7-01	
Sample Number	Sample Type	Sample Recovery %	Depth (feet)	Detailed Soil ar	nd Rock Description	Name Most	un Content	PID (ppm)	FID (ppm)	Remarks:	
			0.0'								
			- 0.0	0.2' Asphalt Paven	nent] []					
1	SS	90			nd Gravel, moist]		,	0.4		
				FILL: Brown 3.9 sand, trace gra	Lean Clay, trace to little		1.	-			
2	SS	70	— — — — 5.0' ——	4.9' Tan SILT, we		1 1			0.1		
3	SS	80			CLAY, some sand,	1			0.1		
4	ss	90		6.3' 2" fine sand s					0.0		
5	SS	85	— ————————————————————————————————————	sand, trace gra	•				0.0		
6	SS	100							0.0		
7		100							0.0		
Н			 15.0'	15.8']					
8	SS	90		Gray SILT, ve	ery moist	1			0.0		
	-			16.5' (2" gravel seam			11				
9	SS	85			ILT, very moist]			0.0		
10	SS	85	20.0'	Gray Clayey	SILT, some fine sand,				0.0		
11	SS	90		21.0 very moist 21.3 Gray Fine to I	Medium SAND, wet				0.0		
12	ss	85		Gray LEAN C sand, trace gra	CLAY, trace to little avel, moist				0.0		
H		-	25.0'	(2" wet sand sear					\dashv		
13	SS	85		Gray Fine to	Medium SAND, trace		11		0.0		
14	SS	90	_	$\chi_{26.8}$ fine gravel, we					0.0		
\vdash	\dashv	\vdash	- —	l .	CLAY, trace to little			\dashv	\dashv		
15	SS	80	—30.0° ——	292					0.0		
16	SS	80		29 8' Gray Fine San	ome sand, very moist dy SILT, wet				0.0		
17	ss	70		Gray LEAN C	CLAY, trace to little				0.0		
18	SS	95	—35.0' ——	Light Brown &	& Gray weathered				0.0		
\vdash	_	╁			LAY, trace to little			-	\dashv		
19	SS	90		39 0' sand, trace gra	vel, moist				0.0		
			40.0'	End of Bo	oring at 39.0 feet				\Box		
Not			ication line		-situ transition between so		be gradual				
V			ter Depth Iling 21.0	Auger Depth 39 Rotary Depth	O.0' Rig Type Diedrich D-50)	-				
(7			ater Depth	Driller Enc S	Geologist <u>GK</u>		(·				
Ľ		ter Dril		Note Boring backf	illed unless otherwise noted.]				

Job Number: 011332	Boring Number	Page	of		
Former Ames Supply Address: 2531 Curtiss Street Downers Grove, IL	Boring Location See Sit	e Diagram		Date	: 11-7-01
Sample Number Sample Type Sample Recovery % Depth (feet) Depth (feet)	nd Rock Description	Nuncral Moratus P.L. % Scale:		PID (ppm) FID (ppm)	Remarks:
0.0'					
0.0 O.2' Asphalt Paven	nent]	11		
1 100 1 100	d Gravel, moist]	111	0.2	
	and Gray Lean Clay, ace gravel, moist				
5.0' (coarse gravel sear	n 4.5-4.7')]]]]	11 +	0.1	
3 33 83 - 6.5	Sandy Clay, wet]		0.0	
4 SS 85 Brown & Gra	y Fine SILTY SAND,			0.0	
5 SS 80 10.0' Gray LEAN C sand, trace gra	CLAY, trace to little avel, moist			0.0	
13.0'	and seams, wet 12.5-13.0'			0.0	
1 SS TO ME	iray LEAN CLAY & DIUM SAND, wet			0.0	
	LAY, trace to little			0.0	
9 SS 85				0.0	
10 SS 95 — 20.0°—				0.0	
11 SS 90 23.0'				0.0	
End of Bo	ring at 23.0 feet				
25.0'			11	11	
HF =					
			111] [
30.0'				11	1
	•			44	
-			111	11	
				11	
35.0'		.	$ \downarrow$	44	
				11	
- - - 				44	
Note: Stratification lines are approximate; in-	-situ transition between so	il types may h	e gradual	لــــــــــــــــــــــــــــــــــــــ	
Groundwater Depth Auger Depth 23	0' Rig Type Diedrich D-50				
While Drilling 12.5' Rotary Depth Driller Enc S.	Geologist GK				1
V Sistiliani Septi	lied unless otherwise noted.			·	

Things.

Job Number: 011332	r: MW-3	Page	of	
Address: Former Ames Supply 2531 Curtiss Street Downers Grove, IL	te Diagram	Date:	11-8-01	
Sample Number Sample Type Sample Recovery % Depth (feet) Pepth (feet)	and Rock Description	F.L.%	mdd)	Remarks:
1 SS 95	hed Gravel, moist on Lean Clay, trace to little gravel, moist 0-4.3') IN CLAY, little sand, , moist 8.8-9.0') Gray SAND & GRAVEL, on COBBLES, some ND & GRAVEL, wet ray LEAN CLAY, trace to gravel, moist	Scale:	E E C C C C C C C C	Remarks.
Note: Stratification lines are approximate;	in-situ transition between so	pil types may be gradua		
Groundwater Depth Auger Depth	27 0' Rig Type Diedrich D-50		···	
While Drilling 19 0' Rotary Depth Groundwater Depth After Drilling Note: Boring back Note: Boring back	Geologist <u>GK</u> ckfilled unless otherwise noted.			

I

Ŋ

J	Job Number: 011332				Boring Number: MW-4				l	Pageof					
A	Former Ames Supply Address: 2531 Curtiss Street Downers Grove, IL				Boring Location See	Boring Location See Site Diagram				١	Date	: 11-8-01			
Sample Number	Sample Type	Sample Recovery %		Depth (feet)	Det	tailed Soil an	nd Rock Description	n	Nac.	Mounte	Contract	·	PID (ppm)	FID (ppm)	Remarks:
				0.0'											
<u> </u>	_	_			1.0'	Black Organic								-	
1	ss	35	 -		1	Brown LEAN sand, trace gra	CLAY, trace to little							0.0	
2	ss	85	二		1	, n.a g								0.0	
3	SS	80	i	5.0' —	1		•							0.0	,
-		-	-		7.5'			_				1			
4	SS	0			1	Light Brown (COBBLES, some sand	٠						0.0	
5	SS	0	<u> </u>	0.0'	1	ошпр								0.0	
6	SS	0			}									0.0	
7	SS	0			14.9'									0.0	
			i	5.0'	1		m and Tan SAND &	-				-		0.0	·
8	SS	60		_	16.8'	GRAVEL, mo	COBBLES, some sand		1 1 1 1		-	_	H		
9	SS	30			18.5	damp Con LEAN C	CLAY, trace to little							0.0	
10	SS	25	2	0.0'	190'	sand, trace gra	ivel, moist	_						0.0	
11	SS	55			}	& GRAVEL, 1	n and Tan Silty SAND moist)				ſ		0.0	
12	SS	55										Ī		0.0	
13	SS	70	~~	5.0' 	26 (7	·						f	\neg	0.0	
		Н			1	Gray LEAN C gravel, moist	LAY, trace sand, trace					-	\dashv	{	
14	SS	100			29.5'								_	0.0	
15	ss	100	34).0' 		_	n & Gray Silty SAND.	\Box						0.0	
16	ss	100			1	Gray LEAN C	LAY, trace to little	1				ſ		0.0	
17	ss	90				sand, trace gra many small (0.5-1	vel, moist 5°) sand seams, wet					Ī	7	0.0	
18	SS	95	3	s.e	37 Oʻ							t	7	0.0	
		П		_	1	End of Bon	ing at 37 0 feet					f	7	\dashv	
		H			1							}	-	\dashv	
Not	e:	Stra	tificat	ion lin	es are a	pproximate; in-	-situ transition between	soil t	ypes	may b	e gra	dual.			
V	Gre	ounc	water	Depth g 29		Auger Depth37									
<u>, –</u>						Rotary Depth Dnller_Enc S	Geologist <u>GK</u>			{					
V	() distribution septi.						filled unless otherwise noted.								

E

Job Number: 011332	Boring Number: MW-5				Page of		
Former Ames Supply Address: 2531 Curtiss Street Downers Grove, IL	Boring Location See Sit	Boring Location See Site Diagram					
Sample Number Sample Type Sample Recovery % Depth (feet)	nd Rock Description	Notaral Mousture Con	PID (nom)	FID (ppm)	Remarks:		
0.0']					
0.5' Black Organi		4	1 -	┼-	·		
1 SS 75 Brown LEAN sand, trace gr	CLAY, trace to little			0.0	·		
2 SS 70	,			0.0			
3 SS 85 5.0'				0.0			
4 SS 40				0.0			
5 SS 100 10.0'				0.0			
6 SS 60				0.0			
7 SS 0 Light Brown	COBBLES, some sand,	$\{ \mid \mid \mid \mid \mid \mid \mid$		0.0			
8 SS 0 damp				0.0			
9 SS 90 Gray LEAN sand, trace gr	CLAY, trace to little	1		0.0			
10 SS 100 20.0 '	avel, moist			0.0			
11 SS 100				0.0			
12 SS 90	5-1 5°) sandy silt and			0.0			
25.0' silt seams, wet at				0.0			
14 SS 100				0.0			
15 SS 25 30.0'				0.0			
16 SS 25 32 1'	ittle sand, very moist to			0.0	·		
17 SS 90 33 0 wet	·			0.0			
35.0' Gray LEAN	CLAY, trace sand, trace			H			
	ing at 35.0 feet		\parallel	H			
				Ш			
Note: Stratification lines are approximate; in	-situ transition between so	il types may be o	radual	Щ			
Groundwater Depth Auger Depth 3	5.0' Rig Type Diedrich D-50		yauuai.				
While Drilling 25 0' Rotary Depth Driller Eric S	Geologist GK						
,	filled unless otherwise noted.		-	<u> </u>			

Ē

ļ

Job Number: 011332				ber: 01	11332	Boring Number: MW-6				Page 1 of 1		
Address: Former Ames Supply Address: 2531 Curtiss Street Downers Grove, IL				2531 Cur	tiss Street	Boring Location See Sit	e Diagram			Date	11-9-01	
Sample Number	Sample Type	Sample Recovery %		Depth (feet)	Detailed Soil an	d Rock Description	Netural M		PID (ppm)	FID (ppm)	Remarks:	
				0.0'		·		TTT				
\square		L	_			and Gray Silty Sand &]		\vdash	 		
] i	SS	25	<u> </u>		Gravel, some	ciay, moist		111	1	0.1		
2	SS	45			3.5' FILL: Crushe	d Gravel, wet	1	111		0.1		
H		┞	<u> </u>	5.0'	Brown Lean (Clay, trace sand, tarce	1	1 1 1	\vdash			
$\frac{3}{2}$	SS	60	匚		gravel, moist		1 1		L	0.0		
4	SS	100			8.1' Gray LEAN (CLAY, trace to little				0.0		
5	SS	50	 	10.0'	9 5' sand, trace gra	avel, moist & GRAVEL, very moist				0.0		
6	SS	100			Light Brown (COBBLES, some sand,			一	0.0		
\vdash	_	\vdash	 	_	11.0' moist Gray LEAN C	LAY, trace sand, trace			-	+		
7	ss	0		15.0'—	12.5' gravel, moist					0.0		
8	SS	95	_		Light Brown C	COBBLES, some sand,				0.0		
9	ss	80			Gray SILT, we	et				0.0		
10	ss	90		20.0'	Gray SAND, s 20.5'	ome gravel, wet				0.0		
11 9		100			21.0' Gray SILT, we	t LAY, trace sand, trace				0.0	•	
	,3	100		\exists	gravel, moist	LAT, trace sand, nace			\vdash	0.0		
				25.0'		ring at 23.0 feet		1 1 1				
\vdash	-	\dashv		-					-	H		
\sqcup	_		_			İ			_	Ц		
			 3	i0.0' ——								
	٦		_							П		
$\vdash \vdash$	-	\dashv						111	-	$\vdash \vdash$		
				55. 0 '								
]				
\vdash	-								-	Н		
		_								Ш		
Note	<u>_</u>	Stra		tion line	s are approximate: in	-situ transition between so	il types ma	v be oradio		Ш		
V	Gro	und	water	Depth	Auger Depth 23	.0' Rig Type Diedrich D-50		, oc gradu	•1•			
_				Depth	Rotary Depth	Geologist GK		. }				
	Groundwater Depth After Drilling				Note Boring backfi	lled unless otherwise noted.						

Į.

Illinois Environmental Protection Agency

LUST Well Completion Report

Bottom of Screen
Bottom of Borehole

60.50

Incident No.:	011332		Well No.:	MW-1
Site Name:	Former Arnes Supply		Date Drilled Start:	
Drilling Contractor:	CS Drilling		Date Completed:	
Driller:	Eric S.		Geologist:	GK
Drilling Method: 4 1/4	4-INCH ID HOLLOW STEM	AUGERS	Drilling Fluids (type):_	NONE
Annular Space Details			_ E	Elevations01 ft.
Type of Surface Seal:	CONCRETE			100.50 Top of Protective Casing
Type of Annular Sealant:		RATED)		100.32 Top of Riser Pipe
Type of Bentonite Seal (Gran				100.50 Ground Surface
	HYDRATED)			100.02 Top of Annular Sealant
Type of Sand Pack:	20-40 FILTER SILICA SAN	ND		0 Casing Stickup
Well Construction Materi	ess fy Type fy Type	Other Specify Type		
		ਰ ਲੈ		85.15Top of Seal
Riser coupling joint	N/A	Locking Car	4 3 3	2.00 Total Seal Interval (feet)
Riser pipe above w.t.	SCHED 40			
Riser pipe below w.t.	N/A	 	4 81 89	83.15 Top of Sand
Screen	SCHED 40		1	
Coupling joint screen to riser	SCHED 40	1	~	
Protective casing	STEEL	Flush Moun	<u> </u>	81.15 Top of Screen
Measurements	to .01 ft (where applicable	e)		
Riser pipe length	19.17	7		
Screen length	10 feet	7		10.00 Total Screen Interval (feet)
Screen slot size	0.010-inch	7	! :===	
Protective casing length	10 inches	7		
Depth to water	23.76	7		
Elevation of water	76.56	7		

Completed by G. KRAEMER

For Groundwater Monitoring Wells installed due to a release of petroleum subject to III. Adm. Code Section 731, Subpart F.

N/A

3.5

slighty silty/reddish brown

IL 532 2274 LPC 500 Rev. Jul-95

Other

Free product thickness

Gallons removed (develop)

Gallons removed (purge)

æ	
ළ	
⋝	
ᅙ	
prove	
ጅ	
-	
been a	
ق	
28	
Ē	
5	
2	
ars. This form	
8	
nt up to five year	
ē	
2	
후	
3	
풂	
₫	
ğ	
ቼ	
⋸	
and	
up to \$50,000.00 au	
8	
8	
8	
Ÿ	
풑	
3	
蒷	
æ	
Š	
₹.	
롲	
ğ	
¥	
Ē	
2	
Ξ	
n day th	
ā	
8	
for each day	
8	
š	L
g	를
25	ē
ö	ž
<u>a</u>	ű
7	Jec.
ල	ĕ
penalty up to \$25,000.00 f	Š

Illinois Envi	ironmental	Protection	L	ÜST We	Il Completion Report	
Incident No.:	0113	332		Well No.:		MW-2
Site Name:	es Supply	Date Drilled Start:		11/7/01		
Drilling Contractor:		Drilling		Date Completed:		
Driller:		ic S.		Geologist:		GK
Drilling Method: 4 1/4	INCH ID HOL	LOW STEM A	UGERS	Drilling Fluids (type):		NONE
Annular Space Details				El	evations -	.01 ft.
Type of Surface Seal:	CON	ICRETE			100.33	Top of Protective Casing
Type of Annular Sealant:			RATED)			Top of Riser Pipe
						Ground Surface
Type of Bentonite Seal (Granular, Pellet) BENTONITE PELLETS (HYDRATED)						Top of Annular Sealant
Type of Sand Pack:			D		0	Casing Stickup
Well Construction Materia	<u></u>	8	9]		
	Stainless Steel Specify Type	PVC Specify Type	Other Specify Type		00.04	To all the second
Riser coupling joint	8 8 8	N/A	Locking Cap		<u>92.81</u> 2.00	Top of Seal
Riser pipe above w.t.		SCHED 40	Locking Cap		2.00	_Total Seal Interval (feet)
Riser pipe below w.t.	1	N/A	 		90.81	Top of Sand
Screen	+	SCHED 40			30.01	_ 10p 0i Galid
Coupling joint screen to riser	-	SCHED 40	Flush Thread			
Protective casing	 	STEEL	Flush Mount	1	88.81	Top of Screen
Measurements	to .01 ft (whe	ere applicable)				
Riser pipe length		1.25	1			
Screen length	10) feet .			10.00	Total Screen Interval (feet)
Screen slot size	0.01	10-inch	4			
Protective casing length		inches	}			
Depth to water	7	7.97				
Elevation of water	9.	2.09	1	· 🗐 i		
ree product thickness	<u> </u>	N/A				
Gallons removed (develop)		10	Į			
Gallons removed (purge)	 	1.5	1			
Other	moderate s	ilt/hown_arav	ł	:==	78 81	Bottom of Screen

For Groundwater Monitoring Wells installed due to a release of petroleum subject to III. Adm. Code Section 731, Subpart F.

G. KRAEMER

78.00 Bottom of Borehole

IL 532 2274 LPC 500 Rev. Jul-95

Completed by

¥	
.8	
9	
3	
fimprisonment	
ă	
00.000,02 \$ of	
_	
Ħ	
as, a fine up	
ontino	
failurec	
ŝ	
ફ્ર	
to \$25,000.00 for each	
Š	
8	
ğ	
\$25	
2	
0	

Illinois Environmental Protection Agency

LUST Well Completion Report

Incident No.:	011332	Well No.:	MW-3	
Site Name:	Former Ames Supply	Date Drilled Start:	11/8/01	
Drilling Contractor:	CS Drilling	Date Completed:	11/8/01	
Driller:	Eric S.	Geologist:	GK	_
Drilling Method:	4 1/4-INCH ID HOLLOW STEM AUGERS	Drilling Fluids (type):	NONE	

Annular Space Details

Type of Surface Seal:	CONCRETE				
Type of Annular Sealant:	BENTONITE CHIPS (HYDRATED)				
Type of Bentonite Seal (Granular, Pellet) BENTONITE PELLETS					
	(HYDRATED)				
Type of Sand Pack:	20-40 FILTER SILICA SAND				

Elevations - .01 ft.

Jet	100.61	_Top of Protective Casing
4	100.31	Top of Riser Pipe
	100.61	_Ground Surface
	100.08	Top of Annular Sealant
	0	_Casing Stickup
7		

Well Construction Materials

	Stainless	Steel	Specify Type	PVC	Specify Type	Other	Specify Type
Riser coupling joint				N/A		Locki	ng Cap
Riser pipe above w.t.				SCF	IED 40		
Riser pipe below w.t.				_	N/A		
Screen				SCH	IED 40		
Coupling joint screen to riser				SCH	IED 40	Flush	Thread
Protective casing				S1	EEL	Flush	Mount

88.01	Top of Seal
2.00	Total Seal Interval (feet)

Top of Sand

83.51 Top of Screen

Measurements

to .01 ft (where applicable)

Riser pipe length	16.8
Screen length	10 feet
Screen slot size	0 010-inch
Protective casing length	10 inches
Depth to water	20.29
Elevation of water	80.02
Free product thickness	N/A
Gallons removed (develop)	7
Gallons removed (purge)	1.0
Other	moderate sit/gray

10.00 Total Screen Interval (feet)

73.51 **Bottom of Screen** Bottom of Borehole

G. KRAEMER Completed by: _

For Groundwater Monitoring Wells installed due to a release of petroleum subject to Ill. Adm. Code Section 731, Subpart F.

Hilmois Envi	ronm antai	Protect:	n Alg a nby	<u>.</u>	t geminotory object to the part 180.
Incident No.:	0113			Well No.:	
Site Name		es Supply		Date Drilled Start:	
Drilling Contractor:		Drilling		Date Completed:	
Driller:		ric S.		Geologist:	
Drilling Method: 4 1/4-	INCH ID HOL	LOW STEM A	UGERS	Drilling Fluids (type):	NONE
Annular Space Details				E	levations01 ft.
Type of Surface Seal:	CON	NCRETE			100.79 Top of Protective Casing
		CHIPS (HYDE	RATED)		100.61 Top of Riser Pipe
Type of Bentonite Seal (Granu					97.77 Ground Surface
	YDRATED)				95.77 Top of Annular Sealant
Type of Sand Pack:		R SILICA SAN	ID		3.02 Casing Stickup
Well Construction Materia	Stainless Steel Specify Type	PVC Specify Type	Other Specify Type		77.50 Top of Seal
Riser coupling joint	0, 0, 0,	N/A	Locking Cap		
Riser pipe above w.t.		SCHED 40			
Riser pipe below w.t.		N/A			75.20 Top of Sand
Screen		SCHED 40	1		
Coupling joint screen to riser		SCHED 40	Flush Thread	i	
Protective casing		STEEL	Flush Mount	1	73.00 Top of Screen
Measurements	to .01 ft (who	ere applicable)		
Riser pipe length	2	7.61			
Screen length	10) feet			10.00 Total Screen Interval (feet)
Screen slot size		10-inch			
Protective casing length		inches]		
Depth to water	 	Dry	7		
Elevation of water		NA			
Free product thickness		N/A	7	==	

For Groundwater Monitoring Wells installed due to a release of petroleum subject to III. Adm. Code Section 731, Subpart F.

63.00 Bottom of Screen 59.00 Bottom of Borehole

NA NA

NA

G. KRAEMER

IL 532 2274 LPC 500 Rev Jul-95

Completed by

Other

Gallons removed (develop)

Gallons removed (purge)

6	
H	
$\overline{}$	_
$\overline{}$	_

Incident No.:	011332		Well No.:		MW-6
Site Name:	Former Ames Supply		Date Drilled Start:		11/9/01
Drilling Contractor.	CS Drilling		Date Completed:	11/9/01	
Driller:			Geologist:		GK
Drilling Method: 4 1	4-INCH ID HOLLOW STEM	AUGERS	Drilling Fluids (type):		NONE
Annular Space Details		· · · · · · · · · · · · · · · · · · ·	E	levations -	.01 ft.
Type of Surface Seal:	CONCRETE			102 19	Top of Protective Casing
Type of Annular Sealant:		DRATED)			Top of Riser Pipe
	nular, Pellet) BENTONITE P		4 1	99.93	_ Ground Surface
	(HYDRATED)	LLCCIO			Top of Annular Sealant
	20-40 FILTER SILICA SA	ND		2.26	_ Casing Stickup
Type of Salid Pack.	20-10 FIETER SILION SA			2.20	_ Casing Stickup
Well Construction Mate	rials				
	8 8	8			
	ss (T) (T)	Other Specify Type			·
	Stainless Steel Specify T PVC	<u> </u>			
	Stainless Steel Specify Type PVC Specify Type	Other		90.94	Top of Seal
Riser coupling joint	N/A	Locking Cap		2.10	Total Seal Interval (feet)
Riser pipe above w.t.	SCHED 4	0			• • •
Riser pipe below w.t.	N/A] 성 성	88.84	Top of Sand
Screen	SCHED 4	0			-
Coupling joint screen to riser	SCHED 4	Flush Thread			
Protective casing	STEEL	Flush Mount	ì	86.84	Top of Screen
-			! ===		_
Measurements	to .01 ft (where applicab	e)			
Riser pipe length	15.16	_			
Screen length	10 feet	4		10.00	Total Screen interval (feet)
Screen slot size	0.010-inch	_			
Protective casing length	10 inches	_	. = 1		
Depth to water	17.82	_	트립 1		
Elevation of water	84.18	_			
Free product thickness	N/A	_			
Gallons removed (develop)	7	_			
Gallons removed (purge)	1.0	_			
Other	slightly silty/light brow	n		76.84	Bottom of Screen
				78.00	Bottom of Borehole

For Groundwater Monitoring Wells installed due to a release of petroleum subject to III. Adm. Code Section 731, Subpart F.

G. KRAEMER

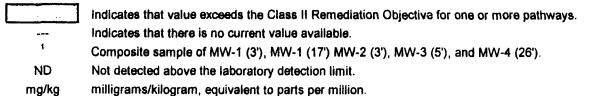
IL 532 2274 LPC 500 Rev Jul-95

Completed by

Table 1 - Monitoring Well and Groundwater Elevation Data, Former Ames Supply, 2537 Curtiss Street, Downers Grove, Illinois

MONITORING WELL	TOTAL DEPTH	GROUND SURFACE	TOIC	DI	EPTH TO GR (ft to	OUNDWATER	GRO	GROUNDWATER ELEVATION (ft)				
NUMBER	(ft bgs)	ELEVATION	ELEVATION	11/13/01	11/16/01		6/27/01	7/5/01				
MW-1	29.35	100.50	100.32	24.75	23.76		75.57	76.56				
MW-2	21.52	100.33	100.06	7.73	7.97		92.33	92.09				
MW-3	27.10	100.61	100.31	20.45	20.29		79.86	80.02				
MW-4	34.77	97.77	100.61	Dry	Dry		NA	NA				
MW-5	33.01	95.66	97.93	Dry	Dry		NA	NA				
MW-6	23.09	99.93	102.00	17.81	17.82		84.19	84.18				
,												

toic Top of Inner Casing


ft bgs feet below ground surface

ft toic feet below top of inner (well) casing

NA Not Applicable

Table 2 - Summary of EGSL Analytical Results for VOCs in Soil Compared to TACO Tier 1 Soil Remediation Objectives for Industrial-Commercial Properties, Former Ames Supply, Downers Grove, Illinois

	Exposure Route-Specific Values for Solls			Soil Compo Groundwate	1	Soll Boring Number Soll Sample Depth (Feet)					
VOCs	Industria	l-Commercial	Constru	Construction Worker		Exposure Route Values		MW-3	Trip		
Method 5035/8260B	ingestion	Inhalation	Ingestion	inhalation	Class I	Class II	Composite ¹	5'	Blank		
Chemical Compound	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)		<u> </u>
cis-1,3-Dichloropropene	33	0.23	610	0.33	0.004	0.02	ND	ND	ND		
trans 1,3-Dichloropropene	33	0.23	610	0.33	0.004	0.02	ND	ON	ND		
Ethylbenzene	200,000	400	20,000	58	13	19	ND	ND	ND		
2-Hexanone	,		***	•			ND	ND	ND		
Methylene chloride	760	24	12,000	34	0.02	0.2	ND	ND	ND		
4-Methyl-2-pentanone				•			ND	ND	ND		
Styrene	410,000	1,500	41,000	430	4	18	137	ND	ND		
1,1,2,2-Tetrachloroethane	,					***	ND	ND	ND		
Tetrachloroethene	110	20	2,400	28	0.06	0.3	ND	ND	ND		<u> </u>
Toluene	410,000	650	410,000	42	12	29	ND	ND	ND		
1,1,1-Trichloroethane		1,200	***	1,200	2	9.6	ND	ND	ND		
1,1,2-Trichloroethane	8,200	1,800	8,200	1,800	0.02	0.3	ND	ND	ND		
Trichloroethene	520	8.9	1,200	12	0.06	0.3	ND	ND	ND		
Trichlorofluoromethane			•••			****	ND	ND	ND		
Vinyl acetate	1,000,000	1,600	200,000	10	170	170	ND	ND	ND		
Vinyl chloride	3	0.06	65	0.08	0.01	0.07	ND	ND	ND		
Xylenes, total	1,000,000	320	410,000	320	150	150	ND	ND	ND		
arten a marca na agrecia de la composición del la											

mg/kg

Table 2 - Summary of EGSL Analytical Results for VOCs in Soil Compared to TACO Tier 1
Soil Remediation Objectives for Industrial-Commercial Properties,
Former Ames Supply, Downers Grove, Illinois

	Exposure Route-Specific Values for Soils				Soll Compo	nent of the or Ingestion	Soil Boring Number Soil Sample Depth (Feet)				
VOC	Industrial-C	Commercial	Construct	on Worker		oute Values	C-1	MW-3	Trip		
Method 5035/8260	Ingestion	Inhalation	Ingestion	inhalation	Class i	Class II	Composite ¹	5'	Blank		
Chemical Compound	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)		
Acetone	200,000	100,000	200,000	100,000	18	16	ND	ND	ND		
Benzene	100	1.8	2,300	2.2	0.03	0.17	ND	ND	ND		
Bromodichloromethane	92	3,000	2.000	3,000	0.6	0.6	ND	ND	ND		
Bromoform	720	100	16,000	140	0.8	0.8	ND	ND	ND		
Bromomethane			•••		_		ND	ND	ND		
2-Butanone			•••				ND	ND	ND		
Carbon disulfide	200,000	720	20,000	9.0	32	160	ND	ND	ND		
Carbon tetrachloride	44	0.64	410	0.90	0.07	0.33	ND	ND	ND		
Chlorobenzene	41,000	210	4,100	1.3	1	6.5	ND	ND	ND		
Chlorodibromomethane	41,000	1,300	41,000	1,300	0.4	0.4	ND	ND	ND		
Chloroethane			***				ND	ND	ND		
Chloroform	940	0.54	2.000	0.76	0.6	2.9	ND	ND	ND		
Chloromethane		_				-	ND	ND	ND		
1,1-Dichloroethane	200,000	1,700	200,000	130	23	110	ND	ND	ND		
1,2-Dichloroethane	63	0.70	1,400	0.99	0.02	0.1	ND	ND	ND		
1,1-Dichloroethene	18,000	1,500	1,800	1,500	0.06	0.3	ND	ND	ND		
cis-1,2-Dichloroethene	20,000	1,200	20,000	1,200	0.4	1.1	ДИ	ND	ND		
trans-1,2-Dichloroethene	41,000	3,100	41,000	3,100	0.7	3.4	ИО	ND	ND		
1,2-Dichloropropane	84	23	1,800	0.50	0.03	0.15	ND	ND	ND		

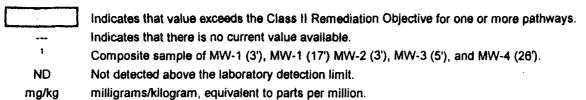
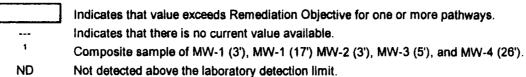



Table 3 - Summary of EGSL Analytical Results for SVOCs in Soil Compared to TACO Tier 1
Soil Remediation Objectives for Industrial-Commercial Properties,
Former Ames Supply, Downers Grove, Illinois

	Exposure Route-Specific Values for Solis				Soil Component of the Groundwater Ingestion		Soli Boring Number Soli Sample Depth (Feet)				
SVOCs	Industrial-C	Commercial	Construction Worker		Exposure Route Values		C-1	MW-3			
Method 8270	Ingestion	Inhalation	Ingestion	inhaiation	Class I	Class II	Composite ¹	5')		
Chemical Compound	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)			
Acenaphthene	120,000		120,000		670	2,900	ND	ND			
Acenaphthylene			•••				ND	ND			
Aniline	•••	•••	•••	-	-		ND	ND			
Anthracene	610,000		610,000	-	12,000	59,000	ND	ND			
Benzoic Acid	1,000,000		820,000		400	400	ND	ND			
Benzo(a)anthracene	8		170		2	8	ND	ND			
Benzo(a)pyrene	0.8		17	-	8	82	ND .	ND			
Benzo(b)fluoranthene	8		170		5	25	ND	ND			
Benzo(ghi)perylene	***		***			_	ND	ND			
Benzo(k)fluoranthene	78		1,700		49	250	ND	ND		l	
Benzyl Alcohol			-	-	_		ND	ND			
Bis(2-chloroethyloxy)methane	•••				•••	_	ND	ND			
Bis(2-chloroethyl)ether	5	0.47	75	0.66	0.0004	0.0004	ND	ND			
Bis(2-chloroisopropyl)ether			_	_		_	ND	ND			
Bis(2-ethylhexyl)phthalate	410	31,000	4,100	31,000	3,600	31,000	ND	ND			
4-Bromophenyl phenyl ether							ND	ND			
Butyl benzyl phthalate	410,000	930	410,000	930	930	930	ND	ND			
4-Chloroaniline	8,200		820	_	0.7	0.7	ND	ND			
4-Chloro-3-methylphenol					•••		ND	ND			
2-Chloronaphthalene				_			ND	ND			
2-Chlorophenol	10,000	53,000	10,000	53,000	4	20	ND	ND			
4-Chlorophenyl phenyl ether			-				ND	ND			
Chrysene	780		17,000		160	800	ND	ND			
Dibenzo(a,h)anthracene	0.8		17		2	7.6	ND	ND			

mg/kg milligrams/kilogram, equivalent to parts per million.

Table 3 - Summary of EGSL Analytical Results for SVOCs in Soil Compared to TACO Tier 1
Soil Remediation Objectives for Industrial-Commercial Properties,
Former Ames Supply, Downers Grove, Illinois

	Exposure Route-Specific				Soil Component of the		Soil Boring Number			
	Values for Solls				Groundwater Ingestion		Soll Sample Depth (Feet)			
SVOCs	Industrial-Commercial		Construction Worker		Exposure Route Values		C-1	MW-3		
Method 8270	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II	Composite ¹	5'	}	\
Chemical Compound	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)		
Dibenzofuran					•••		DND	ND		
1,2-Dichlorobenzene	180,000	560	18,000	310	17	43	ND	ND		
1,3-Dichlorobenzene						•••	ND	ND		
1,4-Dichlorobenzene		17,000	•••	340	2	11	ND	ND		
3,3-Dichlorobenzidine	13		280		0.007	0.033	ND	ND	1	<u> </u>
2,4-Dichlorophenol	6100		610		11	1	ND	ND		
Diethylphthalate	1,000,000	2,000	1,000,000	2,000	470	470	ND	ND	<u> </u>	
2,4-Dimethylphenol	41,000		41,000		9	9	ND	ND		
Dimethylphthalate						***	ND	ND	<u></u>	
Di-n-butylphthalate	200,000	2,300	200,000	2,300	2,300	2,300	ND	ND		
4,6-Dinitro-2-methylphenol							ND	ND	L	
2,4-Dinitrophenol	4,100		410		0.2	0.2	ND	ND		
2,4-Dinitrotoluene	8.4		180		0.0008	0.0008	ND	ND		
2,6-Dinitrotoluene	8.4		180		0.0007	0.0007	ND	ND		
Di-n-octylphthalate	41,000	10,000	4,100	10,000	10,000	10,000	ND	ND		
Fluoranthene	82,000		82,000		4,300	21,000	ДИ	ND		
Fluorene	82,000		82,000	***	560	2,800	ND	ND		
Hexachlorobenzene	4	1.8	78	2.6	2	11	ND	ND		
Hexachlorobutadiene							ND	ND		
Hexachlorocyclopentadiene	14,000	16	14,000	1.1	400	2,200	ND	ND		1
Hexachloroethane	2,000	***	2,000		0.5	2.6	ND	ND		
Indeno(1,2,3-cd)pyrene	8	-	170		14	69	ND	ND		
Isophorone	410,000	4,600	410,000	4,600	8	8	ND	ND		

--- Indicates that there is no current value available.

Composite sample of MW-1 (3'), MW-1 (17') MW-2 (3'), MW-3 (5'), and MW-4 (26').

ND Not detected above the laboratory detection limit.

mg/kg milligrams/kilogram, equivalent to parts per million.

Table 3 - Summary of EGSL Analytical Results for SVOCs in Soil Compared to TACO Tier 1
Soil Remediation Objectives for Industrial-Commercial Properties,
Former Ames Supply, Downers Grove, Illinois

	Exposure Re	oute-Specific		Soil Compo	nent of the		Soil Boring I	Number	
	Values f	or Solls		Groundwate	er Ingestion		Soil Sample De	pth (Feet)	
industrial-C	Commercial	Construct	on Worker	Exposure R	oute Values	C-1	MW-3		
Ingestion	inhalation	Ingestion	Inhalation	Class I	Class II	Composite ¹	5'		
(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)		
		***	***		•••	ND	ND		
100,000		100,000		15	15	ND	ND		
						ND	ND		
41,000	270	4.100	1.8	12	18	ND	ND		
***						ND	ND		
					•••	ND	ND		
						ND	ND		
1,000	140	1,000	9.4	0.1	0.1	ND	ND		
		***	-			ND	ND		
				***		ND	ND		
0.8	-	18		0.00005	0.00005	ND	ND		
1,200	-	25,000		1	5.6	ND	ND		
24		520	•	0.03	0.14	ND	ND		
•••			-			ND	ND		
1,000,000		120,000	***	100	100	ND	ND		
61,000	•••	61,000		4,200	21,000	ND	ND		
20,000	3,200	2,000	920	5	53	ND	ND		
200,000		200,000	-	270	1,400	ND	ND		
520	390	11,000	540	0.2	0.77	ND	ND		
	Ingestion (mg/kg)	Values for Industrial-Commercial Ingestion (mg/kg)	Ingestion (mg/kg) Inhalation (mg/kg) Ingestion (mg/kg)	Industrial-Commercial Construction Worker Ingestion Inhalation Ingestion Inhalation (mg/kg) (mg/kg) (mg/kg) 100,000 100,000 41,000 270 4.100 1.8 1,000 140 1,000 9.4 0.8 18 1,200 25,000 24 520 1,000,000 120,000 61,000 3,200 2,000 920 200,000 200,000	Values for Soils Groundwate Exposure R Industrial-Commercial Ingestion (mg/kg) Construction Worker (mg/kg) Exposure R Ingestion (mg/kg) (mg/kg) (mg/kg) (mg/kg) — — — — 100,000 — 100,000 — — 41,000 270 4.100 1.8 12 — — — — — — — — — — 1,000 140 1,000 9.4 0.1 — — — — — 1,000 140 1,000 9.4 0.1 — — — — — 1,000 140 1,000 9.4 0.1 — — — — — 1,000 140 1,000 9.4 0.1 — — — — — 0.8 — 18 — 0.00005	Values for Soils Groundwater ingestion Industrial-Commercial Construction Worker Exposure Route Values Ingestion (mg/kg) (mg/kg)	Values for Solls Groundwater Ingestion Exposure Route Values C-1 Composite Inhalation (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) Class i (mg/kg) (mg/kg) (mg/kg) (mg/kg) Class i (mg/kg) (mg/kg) (mg/kg) Class i (mg/kg) (mg/kg) (mg/kg) Class i (mg/kg) Class i (mg/kg) (mg/kg) Class i (mg/kg	Values for Soils Construction Worker Exposure Route Values C-1 MW-3	Industrial-Commercial Construction Worker Exposure Route Values C-1 Composite S Composite Comp

Indicates that value exceeds Remediation Objective for one or more pathways.

Indicates that there is no current value available.

Composite sample of MW-1 (3'), MW-1 (17') MW-2 (3'), MW-3 (5'), and MW-4 (26').

ND Not detected above the laboratory detection limit.
mg/kg milligrams/kilogram, equivalent to parts per million.

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

20 November 2001

Gerald Kraemer EGSL 351 W. Hubbard, Suite 401 Chicago, IL 60610

RE: Former Ames Supply

Enclosed are the results of analyses for samples received by the laboratory on 11/09/01. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401 Chicago IL, 60610 Project: Former Ames Supply

Project Number: 011332

Project Manager: Gerald Kraemer

Reported: 11/20/01 14:28

ANALYTICAL REPORT FOR SAMPLES

· · · · · · · · · · · · · · · · · · ·				
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
C-1	B111156-01	Soil	11/09/01 09:00	11/09/01 15:12
MW-3 (5)	B111156-02	Soil	11/09/01 09:00	11/09/01 15:12
Trip Blank	B111156-03	Water	11/09/01 09:00	11/09/01 15:12

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401

Chicago IL, 60610

Project: Former Ames Supply

Project Number: 011332 Project Manager: Gerald Kraemer Reported:

11/20/01 14:28

Volatile Organic Compounds by EPA Method 8260B

Great Lakes Analytical

Analyte	R Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Trip Blank (B111156-03) Water	Sampled: 11/09/01 09:00		ved: 11/09/0	01 15:12					G1,G3
Acetone	ND	10.0	ug/l	1	1110312	11/16/01	11/16/01	5030B/8260B	
Benzene	ND	2.00		"	"	**	**	u	
Bromodichloromethane	ND	2.00		•	•	н	"	•	
Bromoform	ND	2.00	<i>;</i> ,	~	*	*	*		
Bromomethane	ND	2.00		•	•	•	11	**	
2-Butanone	ND ·	10.0	14	•	**	**	"	ti .	
Carbon disulfide	ND	2.00	н	"	•	m	н	*	
Carbon tetrachloride	ND	2.00	•	19	•	"	**	н	
Chlorobenzene	ND	2.00	-	н		"	**	н	
Chlorodibromomethane	ND	2.00	-		•	••	n	"	
Chloroethane	ND	2.00	•	•	**	н	H	ч	
Chloroform	ND	2.00	•	•	**		"	•	
Chloromethane	ND	2.00	•	*	**	11	"	11	
1,1-Dichloroethane	ND	2.00	*	•	••	*	**	"	
1,2-Dichloroethane	ND	2.00	*	-		н	**	14	
1,1-Dichloroethene	ND	2.00		-				. "	
cis-1,2-Dichloroethene	ND	2.00	*	-	-	••	"	**	
trans-1,2-Dichloroethene	ND	2,00			•	**	*	H .	
1,2-Dichloropropane	ND	2.00	*	•	•		**	**	
cis-1,3-Dichloropropene	ND	2.00	•	*	•	••	"	"	
trans-1,3-Dichloropropene	ND	2.00	-	*	•		**	**	
Ethylbenzene	ND	2.00	-	-	-	**	"	11	
2-Hexanone	ND	10.0	•	-	-	**	**	•	
Methylene chloride	ND	2.00	•	•	•		H		
4-Methyl-2-pentanone	ND	10.0	•		•		"	19	
Styrene	ND	2.00	•		•	**	**	n	
11,1,2,2-Tetrachloroethane	ND	2.00			-		**	**	
Tetrachloroethene	ND	2.00		*	•	4	"	"	
Toluene	ND	2.00	•	•		H	٠,,,	,,	
1,1,1-Trichloroethane	ND	2.00	-	-	-		н	•	
1,1,2-Trichloroethane	ND	2.00			-	•	"	•	
Trichloroethene	ND	2.00	•	-	•		,,	•	
Trichlorofluoromethane	ND	2.00	•		•	n	**	**	
Vinyl acetate	ND	2.00	•	•	•	**	H	**	
Vinyl chloride	ND	2.00		-		н		**	
Total Xylenes	ND	2.00		-				**	
Surrogate: Dibromosluoromethane		103 %	91.1-1						
		100 %	85.1-1		*	,,	,,	,,	
Surrogate: 1,2-Dichloroethane-d4		99.6 %	95.1-1:		,,	,,	,,	"	
Surrogate: Toluene-d8						,,	,,	"	
Surrogate: 4-Bromosluorobenzene		94.6 %	89.6-1	כט	-	"	"	"	

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401

Chicago IL, 60610

Project: Former Ames Supply

Project Number: 011332

Project Manager: Gerald Kraemer

Reported:

11/20/01 14:28

Volatile Organic Compounds by EPA Method 5035/8260B

Great Lakes Analytical

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
C-1 (B111156-01) Soil Sam	npled: 11/09/01 09:00 Rec	eived: 11/09	/01 15:12					 	O3,G
Acetone	ND	27.4	ug/kg dry	1	1110346	11/19/01	11/14/01	5035/8260B	
Benzene	ND	5.48			"	**		••	
Bromodichloromethane	ND	5.48	*		•	11		n	
Bromoform	ND	5.48	•	*	"	11	••	n	
Bromomethane	ND	5.48	H	7	-		•	•	
2-Butanone	ND	11.0	H		**	n	•	•	
Carbon disulfide	ND	5.48	*	•	**	н	4	"	
Carbon tetrachloride	ND	5.48		•	*	"	**	"	
Chiorobenzene	ND	5.48	•	-	"	"	"	**	
Chlorodibromomethane	ND	5.48			"	н	**	"	
Chloroethane	ND	5.48	•		**	•	п	11	
Chloroform	ND.	5.48	•		•	••	n	**	
Chloromethane	ND	5.48	-					*	
1,1-Dichloroethane	ND.	5.48	-	**		,,	•	n	
1,2-Dichloroethane	ND	5.48	-				•	**	
I, I - Dichloroethene	ND	5,48	-		н			"	
cis-1,2-Dichloroethene	ND	5.48	-	-		•			
rans-1,2-Dichlorosthene	ND	5.48		-			**		
1,2-Dichloropropane	ND	5.48	•	-	•		n	,,	
cis-1,3-Dichloropropene	ND	5.48	•	-		**			
rans-1,3-Dichloropropene	ND	5.48	-	-		*1	**		
Ethylbenzene	ND	5.48				**	••	"	
2-Hexanone	ND	11.0	-		-	••	**	,,	
Methylene chloride	ND	5.48		•	•		•	•	
I-Methyl-2-pentanone	ND	11.0			•	**	••		
Styrene	ND	5.48	•	•	•	**	-	,	
,1,2,2-Tetrachloroethane	ND	5.48			,	**	••	,,	
Tetrachloroethene	ND	5.48	-	•		11	••	•	
Toluene	ND	5.48			-		14		
,1,1-Trichloroethane	ND	5.48	•			.,		. #	
,1,2-Trichloroethane	ND	5.48	н					· •	
Trichloroethene	ND	5.48	•			**	**	11	
Frichlorofluoromethane	ND	5.48		-		*	н	#	
Vinyl acetate	ND	11.0		-				*	
/inyl chloride	ND	5.48		-					
Total Xylenes	ND ND	5.48	-	-		*	**	••	
Surrogate: Dibromofluorometh		91.4%	81.2-1	34		"	,,	····	-
Surrogate: Dibromojiuoromethane		19 5 %	50.8-1		**	,,	,,	"	04
Surrogate: Toluene-d8	, w r	66.2 %	82-12		"	,,	*	,,	
Surrogale: 1011lene-uo Surrogale: 4-Bromofluorobenz		58.1 %	76.8-1			,,	,,		04 04

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401

Chicago IL, 60610

Project: Former Ames Supply

Project Number: 011332

Project Manager: Gerald Kraemer

Reported:

11/20/01 14:28

Volatile Organic Compounds by EPA Method 5035/8260B

Great Lakes Analytical

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 (5) (B111156-02) Soil	Sampled: 11/09/01 09:00	Received	11/09/01	15:12					O3,G-
Acetone	ND	28.5	ug/kg dry	1	1110346	11/19/01	11/14/01	5035/8260B	
Benzene	ND	5.69	44	•	"	•	n	n	
Bromodichloromethane	ND	5.69	*	**		••	•	•	
Bromoform	ND	5.69	4	**	. "	п	m	"	
Bromomethane	ND	5.69	••	"	19	**	•	**	
2-Butanone	ND	11.4	**	**	*	**	•	*	
Carbon disulfide	ND	5.69	*	11	"	n	**	**	
Carbon tetrachloride	ND	5.69	**	4	**	*	41	. н	
Chlorobenzene	ND	5.69	H	**	rt .	**		*	
Chlorodibromomethane	ND	5.69	-		*	"	n	10	
Chloroethane	ND	5.69	-	•	"	•	"	н	
Chloroform	ND	5.69	-	**	"		••	19	
Chloromethane	ND	5.69	*	**	"	•	11	D.	
1.1-Dichloroethane	ND	5.69	*	**	"	n	n	**	
1,2-Dichloroethane	ND	5.69	**	н	n	17	**	14	
1,1-Dichloroethene	ND	5.69	-		11	*		**	
cis-1,2-Dichloroethene	ND	5.69		-	40	**	,,	•	
trans-1,2-Dichloroethene	ND	5.69	-		H		4	11	
1,2-Dichloropropane	ND	5.69	-			4			
cis-1,3-Dichloropropene	ND	5.69				**	••		
trans-1,3-Dichloropropene	ND	5.69							•
Ethylbenzene	ND	5.69	••	14			•	н	
2-Hexanone	ND	11.4			-		**	н	
Methylene chloride	ND	5.69		**				n	
4-Methyl-2-pentanone	ND	11.4	-		•				
Styrene Styrene	ND	5.69	-	н			••	**	
1,1,2,2-Tetrachloroethane	ND	5.69				18	**	n	
Tetrachloroethene	ND	5.69	-					"	
Toluene	ND	5.69				,,	**	19	
1.1.1-Trichloroethane	ND	5.69		••			**	**	
1,1,2-Trichloroethane	ND	5.69	*		**		*	н	
Trichloroethene	ND ND	5.69			-		•		
			-			**			
Trichlorofluoromethane	ND	5.69			н				
Vinyl acetate	ND	11.4		 	,	"	,,		
Vinyl chloride	ND	5.69			,,	"	,,		
Total Xylenes	ND	5.69							
Surrogate: Dibromofluorometh		87.9 %	81.2-		•	*	"	"	•
Surrogate: 1,2-Dichloroethane	-d4	45.3 %	50.8-	145		"	n	*	04
Surrogate: Toluene-d8		70.5 %	82-1	121	"	"	"	"	04
Surrogate: 4-Bromofluorobenz	ene	68.8 %	76.8-	113	"	"	"	•	04

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401

Chicago IL, 60610

Project: Former Ames Supply

Project Number: 011332 Project Manager: Gerald Kraemer

Reported: 11/20/01 14:28

Semivolatile Organic Compounds by EPA Method 8270C

Great Lakes Analytical

Analyte	Resu	Reporting lt Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-1 (B111156-01) Soil	Sampled: 11/09/01 09:00	Received: 11/09	/01 15:12						G1,G2,G15
Acenaphthene	NI) 110	ug/kg dry	l	11 10232	11/13/01	11/15/01	EPA 8270C	
Acenaphthylene	Ni) 110	18	•		10	•	н	
Aniline	NI) 110	"	**	**	**		"	
Anthracene	NI	110	*	-	,,	н	**	•	
Benzoic acid	N	548	*	*	**	и	**	*	
Benz (a) anthracene	NI	110		•	**	H		н	
Benzo (a) pyrene	N	63.6	~	•	**	и		· *	
Benzo (b) fluoranthene	NI) 110		**	••	"	**	n	
Benzo (ghi) perylene	NI) 110	•	•	H	*	**	н	
Benzo (k) fluoranthene	NI	110	-	"	-	**	n	**	
Benzyl alcohol	NI	110	4	11		**	**	11	
Bis(2-chloroethoxy)meth	nane NI	110	•	н		11	**	••	
Bis(2-chloroethyl)ether	NI) 110	•	**	**		**	n ·	
Bis(2-chloroisopropyl)et	her NI				•	"	н	••	
Bis(2-ethylhexyl)phthala		362				***	**	n	
4-Bromophenyl phenyl e				M	п	11			
Butyl benzyl phthalate	NI			-	**		•		
4-Chloroaniline	NI				••	••		**	
4-Chloro-3-methylpheno					•	•	**	•	
2-Chloronaphthalene	NI		•			**	,,		
2-Chlorophenol	NE		-		•	**		"	
4-Chlorophenyl phenyl e								,,	
Chrysene	NI NI			-		н	**	**	
Dibenz (a,h) anthracene	NI				-	"	**	**	
Dibenzofuran	NI NI			-			"	**	
1,2-Dichlorobenzene	NI			,,		4	и .	**	
1,3-Dichlorobenzene	NI		•			н	**		
1,4-Dichlorobenzene	NI		-				*		
3,3'-Dichlorobenzidine	NE NE		-	*		**			
2,4-Dichlorophenol	NE NE			-	,,	,,	,,	,,	
Diethyl phthalate	NE								
2,4-Dimethylphenol	NI					•	,		
Dimethyl phthalate	NE							74	
	NE								
Di-n-butyl phthalate									
4,6-Dinitro-2-methylpher							"		
2,4-Dinitrophenol	NE NE						.,	7	
2,4-Dinitrotoluene	NE NE			_		"	.,		
2.6-Dinitrotoluene	NE								
Di-n-octyl phthalate	NE		-				"	*	
Fluoranthene	NI					*	"	11	
Fluorene	NE		"	**	"	11	н	н	
Hexachlorobenzene	NI	110		•	"	и	**		

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401

Chicago IL, 60610

Project: Former Ames Supply

Project Number: 011332

Project Manager: Gerald Kraemer

Reported: 11/20/01 14:28

Semivolatile Organic Compounds by EPA Method 8270C

Great Lakes Analytical

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
<u> </u>				Dilution	Daten	riepaieu	Allalyzed	Mentod	
C-1 (B111156-01) Soil Sampled: 11		ived: 11/09							G1,G2,G15
Hexachlorobutadiene	ND .	110	ug/kg dry	1	1110232	11/13/01	11/15/01	EPA 8270C	
Hexachlorocyclopentadiene	ND	110	ч	н	**	**	50	м	
Hexachloroethane	ЙD	110		*	"	"	**	17	
Indeno (1,2,3-cd) pyrene	ND	110	,,	**	**	*		** *	
Isophorone	ND	110	**	7		**	**	4	
2-Methylnaphthalene	ND	110	":	10	н	,	"		
o-Cresol	ND	110	"	Ħ	н		**	н	
m,p-Cresols	ND	110	0	••	.,	••	••	**	
Naphthalene	ND	110	•	н	**		**	**	•
2-Nitroaniline	ЙD	548	**	19	**	**	"	**	
3-Nitroaniline	ND	548		•	**	n		**	
4-Nitroaniline	ND	548	•	"	**	**	**	**	
Nitrobenzene	ND	110	•	•	24	"		**	
2-Nitrophenol	ND	110	-		**	•	н	*	
4-Nitrophenol	ND	548	•	•	**	14		"	
N-Nitrosodi-n-propylamine	ND	110		•	n	•	31	**	
N-Nitrosodiphenylamine	ND	110		•	•	Ħ	. "	*	
Pentachlorophenol	ND	548	-		•		**	10	
Phenanthrene	ND	110	-		**	•		**	
■ Phenol	ND	110	-		*	N	•	•	
Pyrene	ND	110		•		н	**	m	
1,2,4-Trichlorobenzene	ND	110	-		10	•	**		
2,4,5-Trichlorophenol	ND	548		-	14	**		•	
2,4,6-Trichloropheno!	ND	110	•	-	**		**	*	
Surrogate: 2-Fluorophenol		31.2 %	10-1	09		"	"	"	
Surrogate: Phenol-d6		70.9 %	10-1	15	**	*	"	"	
Surrogate: Nitrobenzene-d5		78.4 %	10-1	14	*	•	"	"	
Surrogate: 2-Fluorobiphenyl		63.8 %	10-1	06	~	**	*	,,	
Surrogate: 2,4.6-Tribromophenol		54.3 %	19.3-		•	**	"	"	
Surrogate: p-Terphenyl-d14		100 %	10-1		"	"	"	"	

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401 Chicago IL, 60610 Project: Former Ames Supply

Project Number: 011332

Project Manager: Gerald Kraemer

Reported: 11/20/01 14:28

Semivolatile Organic Compounds by EPA Method 8270C

Great Lakes Analytical

·				<u>-</u>					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 (5) (B111156-02) Soil	Sampled: 11/09/01 09:00	Received:	11/09/01	15:12	_	_			G1,G2,G1
Acenaphthene	ND	114	ug/kg dry	ī	1110232	11/13/01	11/15/01	EPA 8270C	
Acenaphthylene	ND	114	"		•	"	**	u	
Aniline	ND	114	**	"	**	"		ir	
Anthracene	ND	114	**	**	•	11		"	
Benzoic acid	ND	569	•	19	**	n	11	.**	
Benz (a) anthracene	ND	114	4	**	"	*		"	
Benzo (a) pyrene	ND	66.1	*	**	*	**	**	n	
Benzo (b) fluoranthene	ND	114	•	4	**	n	**	•	
Benzo (ghi) perylene	ND	114	н			u		10	
Benzo (k) fluoranthene	ND	114	u		•	4	н	•	
Benzyl alcohol	ND	114	•	"	-	*	**	•	
Bis(2-chloroethoxy)methane	ND	114	•	"	н	4	**	"	
Bis(2-chloroethyl)ether	ND	114	v	,,		•	**	**	
Bis(2-chloroisopropyl)ether	ND	114		"		*		**	
Bis(2-ethylhexyl)phthalate	ND	376	•	•		*	••	*	
4-Bromophenyl phenyl ether	ND	114	-	*	**	**	••	"	
Butyl benzyl phthalate	ND	114	-	••	•		•	n	
4-Chloroaniline	ND	1'4	-	•		**	10	"	
4-Chloro-3-methylphenol	ND	114	-		*	н	,•	**	
2-Chloronaphthalene	ND	114	•			**		**	
2-Chlorophenol	ND	114	•	4	**	**	•	i i	
4-Chlorophenyl phenyl ether	ND	114	•	*	•	11	,,	11	
Chrysene	ND	114	•			"	**	n	
Dibenz (a,h) anthracene	ND	66.1		*		п	**	•	
Dibenzofuran	ND	114	н	•	н	н	••	ŋ	
1,2-Dichlorobenzene	ND	114				n	**	•	
1,3-Dichlorobenzene	ND	114		**		,,	••	n	
1,4-Dichlorobenzene	ND	114	•		**	u		n	
3,3'-Dichlorobenzidine	ND	569	-	-		"	•		
2,4-Dichlorophenol	ND	114			•	**	**	v	
Diethyl phthalate	ND	114				•	**		
2,4-Dimethylphenol	ND	114					**	10	
Dimethyl phthalate	ND	114				,,	**	**	
Di-n-butyl phthalate	ND	376	•	**					
4,6-Dinitro-2-methylphenol	ND	569	•		*	,,	"		
2,4-Dinitrophenol	ND	569	-		-	pr	**	H	
2,4-Dinitrotoluene	ND	114	-	**	-		n	н	
2,6-Dinitrotoluene	ND	114			*			**	
Di-n-octyl phthalate	ND	114					,		
Fluoranthene	ND ND	114		**	**				
Fluorene	ND ND	114				н	11	••	
Hexachlorobenzene						#	" "	**	
i iewachioropenzene	ND	114		••	-•		••	**	

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

Project: Former Ames Supply

351 W. Hubbard, Suite 401 Chicago IL, 60610 Project Number: 011332 Project Manager: Gerald Kraemer

Reported: 11/20/01 14:28

Semivolatile Organic Compounds by EPA Method 8270C

Great Lakes Analytical

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 (5) (B111156-02) Soil	Sampled: 11/09/01 09:00	Received:	11/09/01	15:12					G1,G2,G15
Hexachlorobutadiene	ND	114	ug/kg dry	1	1110232	11/13/01	11/15/01	EPA 8270C	
Hexachlorocyclopentadiene	ND	114	ď	н	"	11	"	19	
Hexachloroethane	ND	114	"	17	*1	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	114		*	**	*	**	и	
Isophorone	ND	114	••		**	**	••		
2-Methylnaphthalene	ND	114	••	**	м	"	"	11	
o-Cresol	ND	114	*	**	10	"	H	"	
m,p-Cresols	ND	114	*	•	14	**	**	**	
Naphthalene	ND	114	••		ч	11	•	Ħ	
2-Nitroaniline	ND	569	••	•			**	**	
3-Nitroaniline	ND	569			•	n	**	19	
4-Nitroaniline	ND	569	•			•	**	10	
Nitrobenzene	ND	114	**	*			a a	н	
2-Nitrophenol	ND	114		*	**	**	**	н	
4-Nitrophenol	ND	569		-		**	"	"	
N-Nitrosodi-n-propylamine	ND.	114	*	-	17	*	**	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
N-Nitrosodiphenylamine	ND	114	+	•	. "			"	
Pentachlorophenol	ND.	569	•	•		**	**		
Phenanthrene	ND	114	-	-		**	н		
Phenol	ND	114	-	-	-	11	**		
Pyrene	ND	114		•	-	н	O O	19	
1,2,4-Trichlorobenzene	ND	114	-	•	•	**	,,	,,	
2,4,5-Trichlorophenol	ND.	569	•	-	*	•	**	**	
2,4,6-Trichlorophenol	ND.	114			•		*	n	
Surrogate. 2-Fluorophenol		31.8%	10-1	09	,,	"	"	"	
Surrogate: Phenol-d6		74.2 %	10-1	15	•	•	"	"	
Surrogate: Nurobenzene-d5		80.9 %	10-1	14	•	"	"	"	
Surrogate: 2-Fluorohiphenyl		62.9 %	10-1	06	-	•	,,	,,	
Surrogate: 2,4,6-Tribromophene	ol	57.6 %	19.3-	88.7	*	,,	"	"	
Surrogate: p-Terphenvl-d14		105 %	10-1	26	~	"	**	"	

Great Lakes Analytical

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-777

EGSL

351 W. Hubbard, Suite 401

Chicago IL, 60610

Project: Former Ames Supply

Project Number: 011332

Project Manager: Gerald Kraemer

Reported: 11/20/01 14:28

Percent Solids

Great Lakes Analytical

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	No
C-1 (B111156-01) Soil Sample	d: 11/09/01 09:00 Rece	ived: 11/09/	01 15:12						
% Solids	91.2	0.100	%	l	1110243	11/14/01	11/14/01	Balance	
MW-3 (5) (B111156-02) Soil S	ampled: 11/09/01 09:00	Received:	11/09/01	15:12					
% Solids	87.8	0.100	%	1	1110243	11/14/01	11/14/01	Balance	

Great Lakes Analytical

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

Project: Former Ames Supply

351 W. Hubbard, Suite 401 Chicago IL, 60610

Project Number: 011332
Project Manager: Gerald Kraemer

Reported: 11/20/01 14:28

Volatile Organic Compounds by EPA Method 8260B - Quality Control Great Lakes Analytical

Analyte	Result	Reporting Limit	Units	Spike Level	Source Resuit	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1110312 - EPA 5030B (P/T)										
Blank (1110312-BLK1)	· 			Prepared	& Analyze	d: 11/16/0)1			
Acetone	ND	10.0	ug/l							
Benzene	ND	2.00	N							
Bromodichloromethane	ND	2.00	"							
Bromoform	ND	2.00	*							
Bromomethane	ND	2.00	*							
2-Butanone	ND	10.0								
Carbon disultide	ND	2.00	-							
Carbon tetrachlonde	ND	2.00	н							
Chlorobenzene	ND	2.00	••							
Chlorodibromomethane	ND	2.00	•							
Chloroethane	ND	2.00	-							
Chloroform	ND	2.00								
Chloromethane	ND	2.00	-							
1,1-Dichloroethane	ND	2.00	-							
1,2-Dichloroethane	GN	2.00	-							
1,1-Dichloroethene	DN	2.00	•							
cis-1,2-Dichloroethene	ND	2.00	•							
rans-1,2-Dichloroethene	ND	2.00	*							
1,2-Dichloropropane	ND	2.00	•							•
cis-1,3-Dichloropropene	ND	2.00	-							
rans-1,3-Dichloropropene	ND	2.00								
Ethylbenzene	ND	2.00	-							
2-Hexanone	ND	10.0	•							
Methylene chlonde	ND	2.00	-							
4-Methyl-2-pentanone	ND	10.0	•							
Styrene	ND	2.00	-							
1,1,2,2-Tetrachloroethane	ND	2.00	-							
Tetrachloroethene	ND	2.00	•							
Toluene	ND	2.00	•							
1.1.1-Trichloroethane	ND	2.00	-							
1.1.2-Trichloroethane	ND	2.00	. •							
Trichloroethene	ND	2.00	-							
Trichlorofluoromethane	ND	2.00								
Vinyl acetate	ND	2.00	•							
Vinyl chloride	ND	2.00	•							
Total Xylenes	ND	2.00	*							
Surrogate: Dibromotluoromethune	53 9		*	50.0		108	91.1-111			
Surrogate: 1,2-Dichloroethane-d4	50.6			50.0			85.1-104			

Great Lakes Analytical

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401 Chicago IL, 60610 Project: Former Ames Supply

Project Number: 011332

Project Manager: Gerald Kraemer

Reported: 11/20/01 14:28

Volatile Organic Compounds by EPA Method 8260B - Quality Control Great Lakes Analytical

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1110312 - EPA 5030B (P/T)										
Blank (1110312-BLK1)				Prepared	& Analyze	d: 11/16/	01			
Surrogate: Toluene-d8	50.9		ug/l	50.0		102	95.1-105			
Surrogate: 4-Bromofluorobenzene	46.6		*	50.0		93.2	89.6-105			
LCS (1110312-BS1)				Prepared a	& Analyze	d: 11/16/	01			
Acetone	308	10.0	ug/l	50.0		616	10-194			
Benzene .	58.6	2.00	•	50.0		117	84.9-115			
Bromodichloromethane	60.6	2.00	**	50.0		121	74.3-130			
Bromoform	50.9	2.00	*	50.0		102	70.1-120			
Bromomethane	64.0	2.00		50.0		128	10-258			
2-Butanone	89.4	10.0	*	50.0		179	10-147		•	
Carbon disulfide	106	2.00	н	50.0		212	43.4-146			
Carbon tetrachlonde	49.6	2.00	•	50.0		99.2	60.5-138			
Chlorobenzene	52.3	2.00	**	50.0		105	85.4-115			
Chlorodibromomethane	53.3	2.00	•	50.0		107	78.8-116			
Chloroethane	54.5	2.00	-	50.0		109	10-455			
Chloroform	61.0	2.00	•	50.0		122	74.5-134			
Chloromethane	75.2	2.00	•	50.0		150	78.7-128			
1,1-Dichloroethane	62.4	2.00	н	50.0		125	76.8-120			
1,2-Dichloroethane	57.6	2.00	*	50 0		115	66.7-129			
I,1-Dichloroethene	63.5	2.00		50.0		127	72.7-125			
cis-1,2-Dichloroethene	59.8	2.00	••	50.0		120	87-123			
trans-1,2-Dichloroethene	63.2	2.00	-	50.0		126	77.9-119			
1,2-Dichloropropane	65.2	2.00	•	50.0		130	88.3-115			
cis-1,3-Dichloropropene	61.1	2.00	•	50.0		122	81.2-120			
trans-1,3-Dichloropropene	67 9	2.00	•	50.0		136	75.2-126			
Ethylbenzene	53.1	2.00	-	50.0		106	84.3-119			
2-Hexanone .	85.9	10.0	•	50.0		172	21.4-142			
Methylene chloride	99.2	2.00	•	50.0		198	62.5-140			
4-Methyl-2-pentanone	62.8	10.0	•	50.0		126	38.2-141			
Styrene	52.9	2.00	•	50.0		106	86.6-117			
1,1,2,2-Tetrachloroethane	52.8	2.00	•	50.0		106	13.2-197			
Tetrachloroethene	44 8	2.00	•	50.0		89.6	76.6-120			
Toluene	55.3	2.00	•	50.0		111	86.3-120			
1,1,1-Trichloroethane	62.2	2.00		50.0		124	63.5-146			
1.1,2-Trichloroethane	59.4	2.00	•	50.0		119	84.5-124			
Trichloroethene	55 5	2.00	-	50.0		111	51.4-153			
Trichlorofluoromethane	202	2.00	n	50.0		404	10-586			
Vinyl acetate	20.3	2.00		50.0		40.6	10-219			

Great Lakes Analytical

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-77

EGSL

351 W. Hubbard, Suite 401

Chicago IL, 60610

Project: Former Ames Supply

Project Number: 011332

Project Manager: Gerald Kraemer

Reported:

11/20/01 14:28

Volatile Organic Compounds by EPA Method 8260B - Quality Control Great Lakes Analytical

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1110312 - EPA 5030B (P/T)	·									
LCS (1110312-BS1)				Prepared	& Analyz	ed: 11/16/	01			
Vinyl chlonde	46.6	2.00	ug/l	50.0		93.2	71-120			
Total Xylenes	156	2.00	*	150		104	88.3-118			
Surrogate: Dibromofluoromethane	54.5		~	50.0		109	91.1-111			
Surrogate: 1,2-Dichloroethane-d4	51.8		#	50.0		104	85.1-104			
Surrogate: Toluene-d8	52.1		•	50.0		104	95.1-105			
Surrogate: 4-Bromojluorobenzene	48.3		•	50.0		96.6	89.6-105			
 Matrix Spike (1110312-MS1)	So	urce: B11106	7-01	Prepared:	11/16/01	Analyzed	l: 11/19/01			
Acetone	31.9	10.0	ug/l	50.0	ND	63.8	10-269			
Benzene	52.5	2.00	**	50.0	ND	105	71.4-115			
Bromodichloromethane	55.2	2.00	•	50 0	ND	110	65.3-134			
Bromoform	53.6	2.00		50.0	ND	107	54.6-132			
Bromomethane	51.0	2.00	•	50 0	ND	102	10-176			
2-Butanone	53.3	100	*	50.0	ND	107	10-201			
Carbon disulfide	66.7	2.00	-	50.0	ND	133	23.4-143			
Carbon tetrachloride	42.2	2.00	*	50.0	ND	84.4	26.3-133			
Chlorobenzene	52.4	2.00		50.0	ND	105	77.4-108			
Chlorodibromomethane	50.3	2.00		50.0	ND	101	72.8-117			
Chloroethane	32.0	2.00	•	50.0	ND	64.0	10-293			
Chloroform	56.0	2.00	•	50 0	ND	112	70.8-124			
Chloromethane	45.0	2.00		50.0	ND	90.0	61.3-109			
1,1-Dichloroethane	55.7	2.00	•	50.0	ND	111	63.3-114			
1,2-Dichloroethane	57.8	2.00	-	50.0	ND	116	54.5-137			
1,1-Dichloroethene	54.8	2.00	*	50.0	ND	110	36.1-115			
cis-1,2-Dichloroethene	91.6	2.00	*	50.0	4.17	175	64.8-129			
trans-1,2-Dichloroethene	53.0	2.00	•	50.0	ND	104	54.7-113			
1,2-Dichloropropane	53.2	2.00	•	50 0	ND	106	77.8-114			
cis-1,3-Dichloropropene	56.2	2.00	•	50.0	ND	112	67.3-117			
trans-1,3-Dichloropropene	56.2	2.00	•	50.0	ND	112	57.3-124			
Ethylbenzene	50.4	2.00	*	50.0	ND	101	68.3-111			
2-Hexanone	56.2	10.0	•	50 0	ND	112	10-225			
Methylene chloride	61.5	2.00	н	50.0	ND	123	45.6-150			
4-Methyl-2-pentanone	57.8	10.0	•	50.0	ND	116	10-208			
Styrene	53.6	2.00	-	50.0	ND	107	49.7-126			
1,1,2,2-Tetrachloroethane	63.2	2.00		50.0	ND	126	20.6-223			
Tetrachloroethene	44.5	2.00	•	50.0	ND	89.0	45.1-113			
Toluene	52.3	2.00	*	50.0	ND	105	71.3-118			
1,1,1-Trichloroethane	47.5	2.00	10	50.0	ND	95.0	42.5-128			

Great Lakes Analytical

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-

EGSL

Project: Former Ames Supply

351 W. Hubbard, Suite 401

Project Number: 011332

Reported:

Chicago IL, 60610

Project Manager: Gerald Kraemer

11/20/01 14:28

Volatile Organic Compounds by EPA Method 8260B - Quality Control Great Lakes Analytical

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	No
Batch 1110312 - EPA 5030B (P/T)										
Matrix Spike (1110312-MS1)	So	urce: B11106	7-01	Prepared:	11/16/01	Analyze	3: 11/19/01			
1,1,2-Trichloroethane	57.1	2.00	ug/l	50.0	ND	114	70.1-139			
Trichloroethene	45.9	2.00	•	50.0	ND	91.8	53.5-106			
Trichlorofluoromethane	54.0	2.00	"	50.0	ND	108	10-417	•		
Vinyl acetate	92.6	2.00	•	50.0	ND	185	10-239			
Vinyl chloride	47.8	2.00	"	50.0	3.12	89.4	37.4-113			
Total Xylenes	156	. 2.00	*1	150	ND	104	70.8-111			
Surrogate: Dibromosluoromethane	54.0			50.0		108	91.1-111			
Surrogate: 1,2-Dichloroethane-d4	53.2		*	50.0		106	85.1-104			
Surrogate: Toluene-d8	50.7		*	50.0		101	95.1-105			
Surrogate: 4-Bromotluorobenzene	49.6		"	50.0		99.2	89.6-105			
Matrix Spike Dup (1110312-MSD1)	So	urce: B11106	7-01	Prepared:	11/16/01	Analyzed	1: 11/19/01			
Acetone	28.5	10.0	ug/l	50.0	ND	57.0	10-269	11.3	73.8	
Benzene	50.6	2.00	н	50 .0	ND	101	71.4-115	3.69	19.1	
Bromodichloromethane	53.9	2.00	**	50.0	ND	801	65.3-134	2.38	15.6	
Bromoform	53.6	2.00		50.0	ND	107	54.6-132	0.00	36.2	
Bromomethane	44 3	2.00		50.0	ND	88.6	10-176	14.1	45.7	
2-Butanone	51.5	10 0	.,	50.0	ND	103	10-201	3 44	61.6	
Carbon disulfide	59 7	2.00		50.0	ND	119	23.4-143	11.1	23.6	
Carbon tetrachloride	398	2.00		50 0	ND	79.6	26.3-133	5.85	26.2	
Chlorobenzene	51.4	2.00	•	50.0	ND	103	77.4-108	1.93	12.2	
Chlorodibromomethane	49.9	2.00	*	50.0	ND	99.8	72.8-117	0.798	23.9	
Chloroethane	41.2	2.00	-	50.0	ND	82.4	10-293	25.1	36.9	
Chloroform	54 2	2.00	•	50 0	ND	108	70.8-124	3.27	10.6	
Chloromethane	41.6	2.00		50.0	ND	83.2	61.3-109	7.85	20.1	
1,1-Dichloroethane	53.4	2.00	14	50.0	ND	107	63.3-114	4.22	12.7	
1,2-Dichloroethane	56.9	2.00	4	50 0	ND	114	54.5-137	1.57	27.2	
1,1-Dichloroethene	49 9	2.00	•	50.0	ND	99.8	36.1-115	9.36	23	
cis-1,2-Dichloroethene	86 6	2.00	•	50.0	4.17	165	64.8-129	5.61	19.6	
trans-1,2-Dichloroethene	49.8	2.00	•	50 0	ND	97.6	54.7-113	6.23	17.4	
1.2-Dichloropropane	517	2.00		50.0	ND	103	77.8-114	2.86	16.4	
cis-1,3-Dichloropropene	55 3	2.00	•	50.0	ND	111	67.3-117	1.61	15.7	
trans-1,3-Dichloropropene	55.3	2.00	•	50.0	ND	111	57.3-124	1.61	26.3	
Ethylbenzene	48.5	2.00	•	50.0	ND	97.0	68.3-111	3.84	13.5	
2-Hexanone	56.6	100	-	50.0	ND	113	10-225	0.709	58.3	
Methylene chlonde	58 7	2.00	-	50.0	ND	117	45.6-150	4.66	11.4	
4-Methyl-2-pentanone	57 2	10.0	••	50.0	ND	114	10-208	1.04	69.7	
Styrene	52.4	2.00	•	50.0	ND	105	49.7-126	2.26	18.6	

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chaucustody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

Project: Former Ames Supply

351 W. Hubbard, Suite 401

Project Number: 011332

Reported:

Chicago IL, 60610

Project Manager: Gerald Kraemer

11/20/01 14:28

Volatile Organic Compounds by EPA Method 8260B - Quality Control **Great Lakes Analytical**

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1110312 - EPA 5030B (P/T)										
Matrix Spike Dup (1110312-MSD1)	. Sou	ırce: B11106'	7-01	Prepared:	11/16/01	Analyzed	d: 11/19/01			
1,1,2,2-Tetrachloroethane	61.3	2.00	ug/l	50.0	ND	123	20.6-223	3.05	50.3	
Tetrachloroethene	41.5	2.00	• н	50.0	ND	83.0	45.1-113	6.98	. 17.6	
Toluene	50.1	2.00		50.0	ND	100	71.3-118	4.30	19.4	
I, I, I-Trichloroethane	44.9	2.00	н	50.0	ND	89.8	42.5-128	5.63	18.4	
1,1,2-Trichloroethane	56.2	2.00	*1	50.0	ND	112	70.1-139	1.59	32.5	
Trichloroethene	44.4	2.00	•	50 0	ND	88.8	53.5-106	3.32	20.9	
Frichlorofluoromethane	48.3	2.00	•	50.0	ND	96.6	10-417	11.1	29.2	
Vinyl acetate	89.3	2.00	•	50.0	ND	179	10-239	3.63	34.5	
Vinyl chloride	44.1	2.00	•	50 .0	3.12	82.0	37.4-113	8.05	23.5	
Total Xylenes	151	2.00	•	150	ND	101	70.8-111	3.26	12.4	
Surrogaic Dibromotluoromethane	53.4			50.0		107	91.1-111			
Surrogate 1,2-Dichloroethane-d4	51.9		•	50.0		104	85.1-104			
Surrogate: Toluene-d8	50.3		•	50.0		101	95.1-105			
Surrogate 4-Bromotluorobenzene	49.4		-	50.0		98.8	89.6-105			

Great Lakes Analytical

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401

Chicago IL, 60610

Project: Former Ames Supply

Project Number: 011332

Project Manager: Gerald Kraemer

Reported: 11/20/01 14:28

Volatile Organic Compounds by EPA Method 5035/8260B - Quality Control Great Lakes Analytical

· ·		Reporting		Spike	Source		%REC		· RPD	- [
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 1110346 - EPA 5035B [P/T]								
Blank (1110346-BLK1)				Prepared: 11/19/01	Analyze	ed: 11/20/01		
Acetone	ND	25 0	ug kg wet					
Benzene	ND	5.00	•					
Bromodichloromethane	ND	. 5.00	"					
Bromoform	ND	5.00	•					
Bromomethane	ND	5.00						
2-Butanone	ND	10 0	11					
Carbon disulfide	ND	5.00	•					
Carbon tetrachionde	ND	5.00	••					
Chlorobenzene	ND	5.00	••					
Chlorodibromomethane	ND	5 00	*					
Chloroethane	ND	5 00	**					
Chloroform	ND	5 00	•					
Chloromethane	ND	5 00						
1,1-Dichloroethane	ND	5 00	•					
1.2-Dichloroethane	ND	5.00	•					
1,1-Dichloroethene	ND	5.00	•					
cis-1,2-Dichloroethene	ND	5.00	•					
trans-1,2-Dichloroethene	ND	5.00	•					
1,2-Dichloropropane	ND	5.00	**					
cis-1,3-Dichloropropene	ND	5.00	11					
trans-1,3-Dichloropropene	ND	5.00	•					
Ethylbenzene	ND	5.00	•					
2-Hexanone	ND	10.0	•					
Methylene chlonde	8.44	5.00	•					
4-Methyl-2-pentanone	ND	100	•					
Styrene	ND	5 00	n					
1,1,2,2-Tetrachloroethane	ND .	5.00	•				•	
Tetrachloroethene	ND	5 00						
Toluene	ND	\$.00						
1,1,1-Trichloroethane	ND	5.00	•					
1,1,2-Trichloroethane	ND	5.00	•					
Trichloroethene	ND	5 00	•					
Trichlorofluoromethane	ND	5 00	*					
Vinyl acetate	ND	ιο υ	*					
₩Vinyl chlonde	ND	5.00	**					
Total Xylenes	ND	5.00	*					
Surrogate. Dibromosluoromethane	34.0		"	50.0	68.0	81.2-134		
Surrogaie: 1.2-Dichloroethane-d4	48.6		-	50.0	97.2	50.8-145		

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

nalyte

351 W. Hubbard, Suite 401 Chicago IL, 60610 Project: Former Ames Supply

Spike

Level

Source

Result

%REC

%REC

Limits

RPD

Project Number: 011332 Project Manager: Gerald Kraemer

Reported: 11/20/01 14:28

RPD

Limit

Notes

Volatile Organic Compounds by EPA Method 5035/8260B - Quality Control Great Lakes Analytical

Units

Reporting

Limit

Result

64 9

90 9

42.6

5.00

5.00

100

50.0

50.0

50.0

Batch 1110346 - EPA 5035B [P/T]					· · · · · · · · · · · · · · · · · · ·		
Blank (1110346-BLK1)				Prepared: 11/1	9/01 Analyze	ed: 11/20/01	
Surrogate: Toluene-d8	52.5		ug kg wet	50.0	105	82-121	
Surrogate: 4-Bromofluorobenzene	38.7		••	50.0	77.4	76.8-113	
LCS (1110346-BS1)	_			Prepared & Ar	nalyzed: 11/19	/01	
Acetone	51.8	25.0	ug/kg wet	50.0	104	10-166	
B e nzene	61.3	5.00	н	50.0	123	62.1-138	
Bromodichloromethane	65.2	5.00	m	50.0	130	64.3-125	
Bromoform	49.3	5.00	*	50.0	98.6	47.5-124	
Bromomethane	30.8	5 00	. *	50.0	61.6	49.2-198	
2-Butanone	42.0	10.0	•	50.0	84.0	10-214	
Carbon disultide	45.3	5 00	-	50.0	90.6	10-175	
Carbon tetrachlonde	72.5	5.00	•	50.0	145	51.1-134	
Chlorobenzene	59.1	5.00	•	50.0	118	63.5-135	
Chlorodibromomethane	53 .7	5.00	*	50.0	107	67.5-121	
Chloroethane	61 5	5.00	•	50.0	123	10-537	
Chloroform	49.8	5.00	•	50.0	99.6	69.2-124	
Chloromethane	29.7	5.00	•	50.0	59.4	67.4-162	
I, I-Dichloroethane	39 2	5.00	*	50.0	78.4	63-127	
1,2-Dichloroethane	53 7	5 00	•	50.0	107	57.5-125	
1,1-Dichloroethene	44.6	5.00	-	50.0	89.2	59.9-129	
cis-1,2-Dichloroethene	43.3	5.00		50.0	86.6	64.4-137	
trans-1,2-Dichloroethene	44.6	5.00	H	50.0	89.2	59-136	
1,2-Dichloropropane	65.5	5.00	•	50.0	131	66.3-132	
cis-1,3-Dichloropropene	58 2	5.00	•	50.0	116	67.9-124	
rans-1,3-Dichloropropene	57 7	5.00	•	50 0	115	63.6-124	
Ethylbenzene	58 0	5.00		50.0	116	60-14!	
2-Hexanone	40.0	100	•	50.0	80.0	10-175	
Methylene chlonde	39.7	5 00	•	50.0	79.4	28.4-149	
4-Methyl-2-pentanone	41.8	100	•	50.0	83.6	10-188	
Styrene	51.1	5 00	•	50.0	102	64.6-136	
1,1,2,2-Tetrachloroethane	36.7	5.00		50.0	73.4	68.4-137	
Tetrachloroethene	61 4	5.00	. •	50 0	123	57.6-142	
Toluene	59 6	5 00	4	50 0	119	64.1-134	
1,1,1-Trichloroethane	65 8	5 00	*	50.0	132	60-134	
1,1.2-Trichloroethane	53.5	5.00	•	50.0	107	76.4-125	

Great Lakes Analytical

Trichloroethene

Vinyl acetate

Trichlorofluoromethane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

61.8-132

14.6-241

10-161

130

182

85.2

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401 Chicago IL, 60610 Project: Former Ames Supply

Project Number: 011332

Project Manager: Gerald Kraemer

Reported: 11/20/01 14:28

Volatile Organic Compounds by EPA Method 5035/8260B - Quality Control Great Lakes Analytical

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1110346 - EPA 5035B [P/T]										
LCS (1110346-BS1)				Prepared	& Analyze	d: 11/19/	01			
Vinyl chloride	37.6	5 00	ug/kg wet	50.0		75.2	57.9-143			
Total Xylenes	152	5.00	11	150		101	60-141			
Surrogate: Dibromosluoromethane	44.8			50.0		89.6	81.2-134			
Surrogate: 1,2-Dichloroethane-d4	46.4		"	50.0		92.8	50.8-145			
Surrogate: Toluene-d8	50.3		"	50.0		101	82-121			
Surrogate: 4-Bromofluorobenzene	48.6		*	50.0		97.2	76.8-113			
LCS Dup (1110346-BSD1)				Prepared:	11/19/01	Analyzeo	d: 11/20/01			
Acetone	49.2	25.0	ug/kg wet	50.0	 	98.4	10-166	5.15	345	
Benzene	55.7	5 00	"	50.0		111	62.1-138	9.57	41,4	
Bromodichloromethane	57.5	5.00	•	50.0		115	64.3-125	12.6	42	
Bromoform	40.7	5.00		50.0		81.4	47.5-124	19.1	57.4	
Bromomethane	37.2	5.00	"	50.0		74.4	49.2-198	18.8	61.9	
2-Butanone	33.9	100	**	50.0		67.8	10-214	21.3	173	
Carbon disulfide	42.1	5.00	•	50.0		84.2	10-175	7.32	126	
Carbon tetrachloride	67.8	5.00		50.0		136	51.1-134	6.70	43.5	
Chlorobenzene	55.5	5.00	••	50.0		111	63.5-135	6.28	39	
Chlorodibromomethane	44 4	5.00		50 O		88.8	67.5-121	19.0	41.6	
Chloroethane	75.4	5.00	•	50.0		151	10-537	20.3	90.3	
Chloroform	40 6	5.00	•	50.0		81.2	69.2-124	20.4	43.5	
Chloromethane	33.3	5.00	H	50.0		66.6	67.4-162	11.4	71.8	
1,1-Dichloroethane	34.8	5.00	*	50.0		69.6	63-127	11.9	41.8	
1,2-Dichloroethane	45.2	5.00		50.0		90.4	57.5-125	17.2	68.6	
1,1-Dichloroethene	41.6	5.00	•	50.0		83.2	59.9-129	6.96	47.5	
cis-1,2-Dichloroethene	37.5	5.00	-	50.0		75.0	64.4-137	14.4	39.3	
trans-1,2-Dichloroethene	39 2	5.00	-	50.0		78.4	59-136	12.9	43	
1,2-Dichloropropane	56.8	5 00	•	50.0		114	66.3-132	14.2	38.1	
cis-1,3-Dichloropropene	49.1	5.00	•	50.0	•	98.2	67.9-124	17.0	41.5	
trans-1,3-Dichloropropene	49.5	5.00	•	50.0		99.0	63.6-124	15.3	57.2	
Ethylbenzene	56.7	5.00		50.0		113	60-141	2.27	42.7	
2-Hexanone	35.8	10.0	-	50 .0		71.6	10-175	11.1	128	
Methylene chlonde	36.4	5.00	· ••	50.0		72.8	28.4-149	8.67	67.4	
4-Methyl-2-pentanone	35 8	10.0	*	50.0		71.6	10-188	15.5	119	
Styrene	47.5	5.00		50.0		95.0	64.6-136	7.30	37.2	
1.1.2,2-Tetrachloroethane	31.6	5.00	**	50.0		63.2	68.4-137	14.9	54.6	
Tetrachloroethene	56.9	5.00	•	50.0		114	57.6-142	7.61	46,3	
Toluene	57 7	5.00	•	50.0		115	64.1-134	3.24	42.6	
1.1.1-Trichloroethane	58.1	5.00		50.0		116	60-134	12.4	44.2	

Great Lakes Analytical

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

Project: Former Ames Supply

351 W. Hubbard, Suite 401 Chicago IL, 60610

Project Number: 011332

Project Manager: Gerald Kraemer

Reported: 11/20/01 14:28

Volatile Organic Compounds by EPA Method 5035/8260B - Quality Control Great Lakes Analytical

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1110346 - EPA 5035B [P/T]										
LCS Dup (1110346-BSD1)				Prepared:	11/19/01	Analyzeo	l: 11/20/01			
1,1,2-Trichloroethane	45.7	5.00	ug/kg wet	50.0		91.4	76.4-125	15.7	53.2	
Trichloroethene	57.7	5.00	**	50.0		115	61.8-132	11.7	43.5	
Trichlorofluoromethane	101	5.00	• •	50.0		202	14.6-241	10.5	115	
Vinyl acetate	35.8	10.0		50.0		71.6	10-161	17.3	92.1	
Vinyl chloride	41.0	5.00		50.0		82.0	57.9-143	8.65	81	
Total Xylenes	143	5.00		150		95.3	60-141	6.10	40.1	
Surrogate: Dibromofluoromethane	38.6			50.0		77.2	81.2-134			
Surrogate: 1,2-Dichloroethane-d4	40.7		*	50.0		81.4	50.8-145			
Surrogate: Toluene-d8	51.9		**	50.0		104	82-121			
Surrogate: 4-Bromofluorobenzene	48.4		~	50.0		96.8	76.8-113			

Great Lakes Analytical

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

Project: Former Ames Supply

351 W. Hubbard, Suite 401 Chicago IL, 60610 Project Number: 011332 Project Manager: Gerald Kraemer Reported: 11/20/01 14:28

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Great Lakes Analytical

	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Kesuit	Limit	Oillis	Devel	ivesuit	/OLCEC	Limits		Limit	110103
Batch 1110232 - EPA 3550B					···					
Blank (1110232-BLK1)				Prepared:	11/13/01	Analyzed	: 11/14/01			
Acenaphthene	, ND	100	ug/kg wet							
Acenaphthylene	ND	100	*							
Aniline	ND	100								
Anthracene	ND	100	н							
Benzoic acid	ND	500	-							
Benz (a) anthracene	ND	100	•							
Benzo (a) pyrene	ND	58.0	•							
Benzo (b) fluoranthene	ND	100	**							
Benzo (ghi) perylene	ND	100								
Benzo (k) fluoranthene	ND	100								
Benzyl alcohol	ND	100	+							
Bis(2-chloroethoxy)methane	ND	100	•							
Bis(2-chloroethyl)ether	ND	100	•							
Bis(2-chloroisopropyl)ether	ND	100	-							
Bis(2-ethylhexyl)phthalate	ND	330	•							
4-Bromophenyl phenyl ether	ND	100	a							
Butyl benzyl phthalate	ND	100	•							
4-Chloroaniline	ND	100	-							
4-Chloro-3-methylphenol	ND	100	-							
2-Chloronaphthalene	ND	100	•							
2-Chlorophenol	ND	100								
4-Chlorophenyl phenyl ether	ND	100								
Chrysene	ND	100	•							
Dibenz (a,h) anthracene	ND	58.0								
Dibenzofuran	ND	100								
1.2-Dichlorobenzene	ND	100	-							
1,3-Dichlorobenzene	ND	100	**							
1,4-Dichlorobenzene	ND	100	•							
3,3'-Dichlorobenzidine	ND	500	-							
2,4-Dichlorophenol	ND	100	•							
Diethyl phthalate	ND	100	-							
2,4-Dimethylphenol	ND	100								
Dimethyl phthalate	ND	100								
Di-n-butyl phthalate	ND	330								
4.6-Dinitro-2-methylphenol	ND	500	-							
2,4-Dinitrophenol	ND	500								
2.4-Dinitrotoluene	ND	100								
2,6-Dinitrotoluene	ND	100		•						

Great Lakes Analytical

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401

Chicago IL, 60610

Project: Former Ames Supply

Project Number: 011332

Project Manager: Gerald Kraemer

Reported: 11/20/01 14:28

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

Great Lakes Analytical

		Reporting		Spike	Source		%REC		RPD	ľ
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
										

В	atch	111	0232 -	EPA	3220R

DI1: (1110222 PI K1)				Prepared: 11/13	int Angless	d: 11/14/01		
Blank (1110232-BLK1)	'ND	100	ug kg wet	~ ·-· ·	Analyze	u. 11/14/01		
Di-n-octyl phthalate Fluoranthene	ND	100	" " " " "					
Fluorene	ND	100						
Hexachlorobenzene	ND	100	н					
Hexachlorobutadiene	ND.	100						
Hexachlorocyclopentadiene	ND	100	-					
Hexachloroethane	ND	100	-					
Indeno (1.2.3-cd) pyrene	ND	100						
Isophorone	ND	100	-					
2-Methylnaphthalene	ND	100	н					
o-Cresol	ND	100						
m,p-Cresols	ND	100	•					
Naphthalene	ND	100	-					
2-Nitroaniline	ND	500	•					
3-Nitroaniline	ND	500	-					
4-Nitroaniline	ND	500	-					
Nitrobenzene	ND	100						
2-Nitrophenol	ND	100	-					
4-Nitrophenol	ND	500						
N-Nitrosodi-n-propylamine	ND	100	4					
N-Nitrosodiphenylamine	ND	100						
Pentachlorophenol	ND	500						
Phenanthrene	ND	100	•					
Phenol	ND	100	•					
Pyrene	ND	100	4					
1,2,4-Trichlorobenzene	ND	100	-					
2.4.5-Trichlorophenol	ND	500	-					
2.4,6-Trichlorophenol	ND	100	-					
Surrogate: 2-Fluorophenol	1510			3370	44.8	10-109		•
Surrogate: Phenol-do	1790		•	3370	53.1	10-115		
Surrogate: Nitrobenzene-d5	1170		-	1690	69.2	10-114		
Surrogate 2-Fluorobiphenyl	1050			1690	62.1	10-106		
Surrogate: 2.4,6-Tribromophenal	2030		•	3370	60.2	19.3-88.7		
Surrogate: p-Terphenvl-d14	1670		•	1690	98.8	10-126		

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-777

EGSL

Project: Former Ames Supply

351 W. Hubbard, Suite 401 Chicago IL, 60610 Project Number: 011332 Project Manager: Gerald Kraemer

Reported: 11/20/01 14:28

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Great Lakes Analytical

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1110232 - EPA 3550B										
LCS (1110232-BSI)				Prepared:	11/13/01	Analyzed	11/14/01		-	
Acenaphthene	1200	100	ug/kg wet	1710		70.2	29.4-110			
Acenaphthylene	1250	100	*	1710		73.1	31-110			
Aniline	227 .	100	11	1710		13.3	5-110			
Anthracene	1200	100	•	1710		70.2	32.9-110			
Benzoic,acid	ND	500	#	1710		6.20	5-110			
Benz (a) anthracene	1240	100	•	1710		72.5	35.9-110			
Benzo (a) pyrene	. 1270	58.0	-	1710		74.3	40.3-110			
Benzo (b) fluoranthene	1450	100	*	1710		84.8	41.9-110			
Benzo (ghi) perylene	1350	100	•	1710		78.9	15-110			
Benzo (k) fluoranthene	1460	100	•	1710		85.4	39.6-110	•		
Benzyl alcohol	1120	100	•	1710		65.5	29.1-110			
Bis(2-chloroethoxy)methane	1390	100	•	1710		81.3	27.8-110			
Bis(2-chloroethyl)ether	1170	100		1710		68.4	10.8-110			
Bis(2-chloroisopropyl)ether	1230	001	•	1710		71.9	16.5-110			
Bis(2-ethylhexyl)phthalate	1860	330		1710		109	5-131			
4-Bromophenyl phenyl ether	1330	100	-	1710		77.8	32.6-110			
Butyl benzyl phthalate	2300	100	-	1710		135	5-159			
4-Chloroaniline	636	100	•	1710		37.2	5-110			
4-Chloro-3-methylphenol	1500	100	•	1710		87.7	33.5-110			
2-Chloronaphthalene	1220	100	*	1710		71.3	17-110			
2-Chlomphenol	1160	100		1710		67.8	30.6-110			
4-Chlorophenyl phenyl ether	1430	100	**	1710		83.6	15.2-110			
Chrysene	892	100	-	1710		52.2	36.1-110			
Dibenz (a,h) anthracene	1130	58 0	to	1710		66.1	30.5-110			
Dibenzofuran	1490	100		1710		87.1	15.3-110			
1,2-Dichlorobenzene	1110	100	•	1710		64.9	15.6-110			
1,3-Dichlorobenzene	1210	100	•	1710		70.8	16.2-110	•		
1,4-Dichlorobenzene	1200	001	-	1710		70.2	16.3-110			
3,3'-Dichlorobenzidine	ND	500	-	1710		23.6	5-110			
2,4-Dichlorophenol	1370	100	•	1710		80.1	16.9-110			
Diethyl phthalate	1300	100	-	1710		76.0	15.8-110			
2,4-Dimethylphenol	1290	100	-	1710		75.4	16.1-110			
Dimethyl phthalate	1320	100	•	1710		77.2	15.3-110			
Di-n-butyl phthalate	t 300	330	•	1710		76.0	32-110			
4.6-Dinitro-2-methylphenol	808	500	-	1710		47.3	6.14-110			
2,4-Dinitrophenol	ND	500		1710		28.1	5-110			
2,4-Dinitrotoluene	1340	100	•	1710		78.4	32.1-110			
2,6-Dinitrotoluene	1380	100	•	1710			34.2-110			

Great Lakes Analytical

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401

Chicago IL, 60610

Project: Former Ames Supply

Project Number: 011332

Project Manager: Gerald Kraemer

Reported: 11/20/01 14:28

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control **Great Lakes Analytical**

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1110232 - EPA 3550B										
LCS (1110232-BS1)				Prepared:	11/13/01	Analyzed	1: 11/14/01			
Di-n-octyl phthalate	1050	100	ug kg wet	1710		61.4	5-124			
Fluoranthene	1190	100		1710		69.6	15-110			
Fluorene	1360	100	•	1710		79.5	30.1-110			
Hexachlorobenzene	1290	100		1710		75.4	31.8-110			
Hexachlorobutadiene	1390	100	•	1710	•	81.3	11.1-110			
Hexachlorocyclopentadiene	1010	100	**	1710		59.1	7.46-110			
Hexachloroethane	1350	100	-	1710		78.9	10.6-110			
Indeno (1.2,3-cd) pyrene	1310	100	-	1710		76.6	11.3-118			
Isophorone	1370	100	-	1710		80.1	28-110			
2-Methylnaphthalene	1350	100	•	1710		78.9	31.8-110			
o-Cresol	1340	100	•	1710		78.4	20.3-110			
m,p-Cresols	1300	100		1710		76.0	5-110			
Naphthalene	1180	100	-	1710		69.0	27-110			
2-Nitroaniline	1450	500	*	1710		84.8	12-110			
3-Nitroaniline	1140	500	•	1710		66.7	5-110			
4-Nitroaniline	1300	500	•	1710		76.0	5-110			
Nitrobenzene	1380	100	•	1710		80.7	27.3-110			
2-Nitrophenol	1370	100	-	1710		80.1	29.7-110			
4-Nitrophenol	1180	500	•	1710		69.0	10.4-110			
N-Nitrosodi-n-propylamine	1500	100		1710		87.7	32.4-110			
N-Nitrosodiphenylamine	1250	100		1710		73.1	31.2-110		•	
Pentachlorophenol	861	500		1710		50.4	5-110			
Phenanthrene	1290	100	-	1710		75.4	35.4-110			
Phenol	1150	100	•	1710		67.3	15.8-110			
Pyrene	2330	100	•	1710		136	5-166			
1,2,4-Trichlorobenzene	1290	100	•	1710		75.4	14.3-110			
2,4,5-Trichlorophenol	1300	500	•	1710		76.0	14.3-110			
2,4,6-Trichlorophenol	1470	100	-	1710		86.0	30.9-110			
Surrogate 2-Fluorophenol	1700			3410		49.9	10-109			
Surrogate Phenol-do	2140		•	3410		62.8	10-115			
Surrogate: Nitrobenzene-d5	1330		•	1710		77.8	10-114			
Surrogate: 2 Fluorohiphensi	1140			1710		66.7	10-106			
Surrogate, 2,4,6-Tribromophenol	2250		•	3410		66.0	19.3-88.7			
Surrogate. p-Terphenyl-414	2220		•	1710		130	10-126			

Great akes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401 Chicago IL, 60610 Project: Former Ames Supply

Project Number: 011332

Project Manager: Gerald Kraemer

Reported: 11/20/01 14:28

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Great Lakes Analytical

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1110232 - EPA 3550B										
Matrix Spike (1110232-MS1)	So	urce: B11110	8-08	Prepared:	11/13/01	Analyze	d: 11/14/01			
Acenaphthene	1400		ug/kg dry	2120	ND	66.0	5-140			
Acenaphthylene	1560	124	••	2120	ND	73.6	5-131			
Aniline	1080	124	•	2120	ND	50.9	5-110			
Anthracene	1340	124	**	2120	ND	63.2	5-146			
Benzoic acid	ND	620		2120	ND	25.1	5-149			
Benz (a) anthracene	1300	124	•	2120	ND	61.3	5-149			
Benzo (a) pyrene	1440	71.9	•	2120	ND	67.9	5-134			
Benzo (b) fluoranthene	1200	124		2120	ND	56.6	5-127			
Benzo (ghi) perylene	3440	124	•	2120	ND	162	5-223			
Benzo (k) fluoranthene	1060	124	•	2120	ND	50.0	5-120			
Benzyl alcohol	1390	124		2120	ND	65.6	8.91-110			
Bis(2-chloroethoxy)methane	1720	124	•	2120	ND	81.1	23.1-110			
Bis(2-chloroethyl)ether	1320	124	•	2120	ND	62.3	16.6-110			
Bis(2-chloroisopropyl)ether	1470	124	-	2120	ND	69.3	14.5-110			
Bis(2-ethylhexyl)phthalate	3020	409		2120	3970	NR	5-153			
4-Bromophenyl phenyl ether	2550	124	•	2120	ND	120	5-152			
Butyl benzyl phthalate	1540	124	•	2120	ND	72.6	5-216			
4-Chloroaniline	1050	124	•	2120	ND	49.5	5-110			
4-Chloro-3-methylphenol	1890	124		2120	ND	89.2	17.8-110			
2-Chloronaphthalene	1650	124	•	2120	ND	77.8	5-117			
2-Chlorophenol	1390	124	-	2120	ND	65.6	5.03-128			
4-Chlorophenyl phenyl ether	1480	124	**	2120	ND	69.8	5-110			
Chrysene	1000	124	*	2120	ND	47.2	5-155			
Dibenz (a,h) anthracene	2700	71.9	•	2120	ND	127	5-164			
Dibenzofuran	1650	124	•	2120	ND	77.8	5-133			
1,2-Dichlorobenzene	1300	124		2120	ND	61.3	5-117			
1,3-Dichlorobenzene .	1460	124		2120	ND	68.9	5-110			
1,4-Dichlorobenzene	1360	124		2120	ND	64.2	5-110			
3,3'-Dichlorobenzidine	915	620	•	2120	ND	43.2	5-110			
2,4-Dichlorophenol	1840	124	*	2120	ND	86.8	21.5-110			
Diethyl phthalate	1520	124	*	2120	ND	71.7	5-112	•		
2,4-Dimethylphenol	1740	124	•	2120	ND	82.1	5-122			
Dimethyl phthalate	1710	124	•	2120	ND	80.7	14.4-114			
Di-n-butyl phthalate	1090	409	•	2120	ND	51.4	5-117			
4,6-Dinitro-2-methylphenol	2360	620	н	2120	ND	111	5-126			
2.4-Dinitrophenol	913	620	**	2120	ND	43.1	5-140			
2,4-Dinitrotoluene	1600	124	м	2120	ND	75.5	16.2-110			
2,6-Dinitrotoluene	1850	124	•	2120	ND	87.3	5-135			

Great Lakes Analytical

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-77

EGSL

351 W. Hubbard, Suite 401 Chicago IL, 60610

Project: Former Ames Supply

Project Number: 011332
Project Manager: Gerald Kraemer

Reported: 11/20/01 14:28

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Great Lakes Analytical

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note
Batch 1110232 - EPA 3550B						····				
Matrix Spike (1110232-MS1)	So	urce: B1111	08-08	Prepared:	11/13/01	Analyzed	1: 11/14/01			
Di-n-octyl phthalate	1110	124	ug/kg dry	2120	ND	52.4	5-170	•		
Fluoranthene	490	124	"	2120	ND	23.1	5-110			
Fluorene	1390	124	*1	2120	ND	65.6	5-130			
Hexachlorobenzene	1960	124	"	2120	ND	92.5	5-117			
Hexachlorobutadiene	1670	124	4	2120	ND	78.8	5-110			
Hexachlorocyclopentadiene	1500	124	*	2120	ND	70.8	5-110			
Hexachloroethane	1670	124	*	2120	ND	78.8	5-110			
Indeno (1,2,3-cd) pyrene	3040	124	•	2120	ND	143	5-169			
Isophorone	1720	124	**	2120	ND	81.1	23.1-110			
2-Methylnaphthalene	1640	124	4	2120	ND	74.2	5-137			
o-Cresol	1690	124	**	2120	ND	79.7	5-128			
m,p-Cresols	1630	124	4	2120	ND	76.9	5-131			
Naphthalene	1410	124	n n	2120	ND	66.5	5-126			
2-Nitroaniline	1900	620	-	2120	ND	89.6	18.1-110			
3-Nitroaniline	1330	620	4	2120	ND	62.7	5-110			
4-Nitroaniline	1230	620	*	2120	ND	58.0	15.8-110			
Nitrobenzene	1670	124	-	2120	ND	78.8	14.4-110			
2-Nitrophenol	1790	124	•	2120	ND	84.4	5-120			
4-Nitrophenol	1620	620	*	2120	ND	76.4	5-124			
N-Nitrosodi-n-propylamine	1920	124	**	2120	ND	90.6	23.2-110			
N-Nitrosodiphenylamine	2790	124	•	2120	ND	132	5-127			
Pentachlorophenol	1800	620		2120	ND	84.9	5-114			
Phenanthrene	1450	124		2120	ND	68.4	5-137			
Phenol	1440	124	**	2120	ND	67.9	23.7-110			
Pyr e ne	2540	124	**	2120	143	113	5-402			
1,2,4-Trichlombenzene	1610	124	*	2120	ND	75.9	5-110			
2,4,5-Trichlorophenol	1720	- 620	•	2120	ND	81.1	11.6-113			
2.4.6-Trichlorophenoi	2420	124	-	2120	ND	114	18.8-110			
Surrogate 2-Fluorophenol	2080		- ;	4220		49.3	10-109			
Surrogate. Phenol-d6	2640		*	4220		62.6	10-115			
Surrogate: Nitrobenzene-d5	1580		-	2120		74.5	10-114			
Surrogate 2-Fluorobiphenyl	1510		•	2120		71.2	10-106			
Surrogate: 2.4.6-Tribromophenol	5070		•	4220		120	19.3-88.7			
Surrogate: p-Terphenyl-d14	1720		~	2120		81.1	10-126			

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chaustody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

Project: Former Ames Supply

351 W. Hubbard, Suite 401 Chicago IL, 60610 Project Number: 011332
Project Manager: Gerald Kraemer

Reported: 11/20/01 14:28

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Great Lakes Analytical

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1110232 - EPA 3550B	·					·				
Matrix Spike Dup (1110232-MSD1)	So	urce: B111108	-08	Prepared:	11/13/01	Analyzed	i: 11/14/01			
Acenaphthene	1380	124 u	g/kg dry	2040	ND	67.6	5-140	1.44	81.8	
Acenaphthylene	1530	124	"	2040	ND	75.0	5-131	1.94	73	
Aniline	1020	124	**	2040	ND	50.0	5-110	5.71	116	
Anthracene	1320	124		2040	ND	64.7	5-146	1.50	98.1	
Benzoic acid	ND	620	**	2040	ND	23.2	5-149	11.7	78.8	
Benz (a) anthracene	1250	124	-	2040	ND	61.3	5-149	3.92	124	
Benzo (a) pyrene	1210	71.9	-	2040	ND	59.3	5-134	17.4	124	
Benzo (b) fluoranthene	1130	124	-	2040	ND	55.4	5-127	6.01	121	
Benzo (ghi) perylene	3180	124	•	2040	ND	156	5-223	7.85	121	
Benzo (k) fluoranthene	954	124	•	2040	ND	46.8	5-120	10.5	107	
Benzyl alcohol	1360	124	•	2040	ND	66.7	8.91-110	2.18	103	
Bis(2-chloroethoxy)methane	1620	124		2040	ND	79.4	23.1-110	5.99	86	
Bis(2-chloroethyl)ether	1330	124	*	2040	ND	65.2	16.6-110	0.755	83.4	
Bis(2-chlorossopropyl)ether	1400	124	•	2040	ND	68.6	14.5-110	4.88	80.8	
Bis(2-ethylhexyl)phthalate	3690	409	-	2040	3970	NR	5-153	20.0	115	
4-Bromophenyl phenyl ether	2520	124	•	2040	ND	124	5-152	1.18	70 .7	
Butyl benzyl phthalate	1660	124		2040	ND	81.4	5-216	7.50	92.3	
4-Chloroaniline	999	124	-	2040	ND	49.0	5-110	4.98	196	
4-Chloro-3-methylphenol	1790	124	•	2040	ND	87.7	17.8-110	5.43	100	
2-Chloronaphthalene	1670	124	•	2040	ND	81.9	5-117	1.20	77.7	
2-Chlorophenol	1330	124		2040	ND	65.2	5.03-128	4.41	77.4	
4-Chlorophenyl phenyl ether	1490	124	•	2040	ND	73.0	5-110	0.673	73	
Chrysene	996	124		2040	ND	48.8	5-155	0.401	122	
Dibenz (a,h) anthracene	2490	71.9	-	2040	ND	122	5-164	8.09	105	
Dibenzofuran	1670	124	"	2040	ND	81.9	5-133	1.20	76.2	
1,2-Dichlorobenzene	1270	124	-	2040	ND	62.3	5-117	2.33	84.9	
1,3-Dichlorobenzene	1410	124		2040	ND	69.1	5-110	3.48	84	
1,4-Dichlorobenzene	1390	124	-	2040	ND	68.1	5-110	2.18	86.6	
3,3'-Dichlorobenzidine	881	620		2040	ND	43.2	5-110	3.79	146	
2,4-Dichlorophenol	1770	124	-	2040	ND	86.8	21.5-110	3.88	81	
Diethyl phthalate	1480	124	-	2040	ND	72.5	5-112	2.67	75.8	
2,4-Dimethylphenol	1660	124	-	2040	ND	81.4	5-122	4.71	145	
Dimethyl phthalate	1700	124		2040	ND	83.3	14.4-114	0.587	77.1	
Di-n-butyl phthalate	1080	409		2040	ND	52.9	5-117	0.922	107	
4,6-Dinitro-2-methylphenol	1570	620		2040	ND	77.0	5-126	40.2	97.4	
2,4-Dinitrophenol	ND.	620		2040	ND	29.8	5-140	40.2	25.6	
	1580	124		2040	ND	77.5	16.2-110	1.26	25.6 85.7	
2.4-Dinitrotoluene 2.6-Dinitrotoluene	1800	124		2040	ND					
2.0-Dimentionene	1 900	124		2049	עא	88.2	5-135	2.74	89.6	

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401

Chicago IL, 60610

Project: Former Ames Supply

Spike

Source

%REC

Project Number: 011332

Reporting

Project Manager: Gerald Kraemer

Reported: 11/20/01 14:28

RPD

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Great Lakes Analytical

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1110232 - EPA 3550B										
Matrix Spike Dup (1110232-MSD1)	Sou	ırce: B1111	08-08	Prepared:	11/13/01	Analyzed	1: 11/14/01			
Di-n-octyl phthalate	1130	124	ug/kg dry	2040	ND	55.4	5-170	1.79	76.1	
Fluoranthene	457	124	"	2040	ND	22.4	5-110	6.97	142	
Fluorene	1380	124	.41	2040	ND	67.6	5-130	0.722	79.5	
Hexachlorobenzene	1910	124	*	2040	ND	93.6	5-117	2.58	79.5	
Hexachlorobutadiene	1610.	124	*	2040	ND	78.9	5-110	3.66	82	
Hexachlorocyclopentadiene	1270	124		2040	ND	62.3	5-110	16.6	71.2	
Hexachloroethane	1610	124	**	2040	ND	78.9	5-110	3.66	90.3	
ndeno (1,2,3-cd) pyrene	2820	124	11	2040	ND	138	5-169	7.51	107	
Isophorone	1640	124	*	2040	ND	80.4	23.1-110	4.76	84.6	
2-Methylnaphthalene	1540	124	•	2040	ND	72.2	5-137	6.29	71.7	
o-Cresol	1630	124	*	2040	ND	79.9	5-128	3.61	86 1	
n,p-Cresols	1570	124		2040	ND	77.0	5-131	3.75	92.8	
Naphthalene	1370	124	•	2040	ND	67.2	5-126	2.88	75.6	
-Nitroaniline	1840	620	••	2040	ND	90.2	18.1-110	3.21	89 3	
-Nitroaniline	1300	620	•	2040	ŅD	63.7	5-110	2.28	111	
4-Nitroamiline	1180	620	••	2040	ND	57.8	15.8-110	4.15	99.9	
Nitrobenzene	1570	124	•	2040	ND	77.0	14.4-110	6.17	84.2	
2-Nitrophenol	1660	124	-	2040	ND	81.4	5-120	7.54	85.1	
1-Nitrophenol	1470	620		2040	ND	72.1	5-124	9.71	55 2	
N-Nitrosodi-n-propylamine	1850	124	••	2040	ND	90.7	23.2-110	3.71	93.5	
N-Nitrosodiphenylamine	2900	124	-	2040	ND	142	5-127	3.87	74.3	
Pentachlorophenol	1560	620		2040	ND	76.5	5-114	14.3	70.7	
Phenanthrene	1470	124	•	2040	ND	72.1	5-137	1.37	141	
Phenol	1380	124	-	2040	ND	67.6	23.7-110	4.26	88	
Pyrene	2440	124	-	2040	143	113	5-402	4.02	157	
1.2,4-Trichlorobenzene	1530	124	••	2040	ND	75.0	5-110	5.10	76.7	
2,4,5-Trichlorophenol	1600	620	-	2040	ND	78.4	11.6-113	7.23	79.3	
2,4,6-Trichlorophenol	2500	124	•	2040	ND	123	18.8-110	3.25	88.2	
Surrogase 2-Fluorophenal	2010			4070		49.4	10-109			
Surrogate: Phenol-dh	2510		•	4070		61.7	10-115			
Surrogate: Nitrobenzene-45	1470		~	2040		72.1	10-114			
Surrogate, 2-Fluorohiphensi	1510		•	2040		74.0	10-106			
Surrogate. 2.4.6-Tribromophenol	4910		**	4070		121	19.3-88.7			
Surrogate: p-Terphenyl-d14	1750		•	2040		85.8	10-126			

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

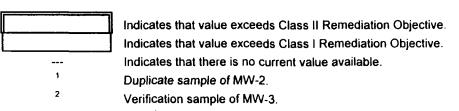
EGSL Project: Former Ames Supply

351 W. Hubbard, Suite 401 Project Number: 011332 Reported:
Chicago IL, 60610 Project Manager: Gerald Kraemer 11/20/01 14:28

Notes and Definitions

	Notes and Delinitions
G۱	The recovery of one or more analytes in the matrix QC (MS/MSD) associated with this sample is above the laboratory's established acceptance criteria. Refer to the included QC reports for more detail.
G15	The relative percent difference (RPD) of one or more analytes in the matrix QC (MS/MSD) associated with this sample is above the laboratory's established acceptance limits. Refer to the included QC reports for more detail.
G2	The recovery of one or more analytes in the matrix QC (MS/MSD) associated with this sample is below the laboratory's established acceptance criteria. Refer to the included QC reports for more detail.
G3	The recovery of one or more analytes in the laboratory control QC (BS/BSD) associated with this sample is above the laboratory's established acceptance criteria. Refer to the included QC reports for more detail.
G 4	The recovery of one or more analytes in the laboratory control QC (BS/BSD) associated with this sample is below the laboratory's established acceptance criteria. Refer to the included QC reports for more detail.
O3	One or more internal standard recoveries were above the method specified acceptance criteria.
O4	The recovery for this analyte is below the laboratory's established acceptance criteria.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

Great Lakes Analytical

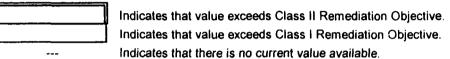

CHAIN OF CUSTODY REPORT

127 - µsch way Buffalo Grove, IL 60089-4505 (847) 808-7766 FAX (847) 808-7772 E. R. Road Oak Creek, WI 53154 (414) 570-9460 FAX (414) 570-9461

			, ——																			
lient: EGSL			Bill To:			\leq	A	M	1E						T: (S	το)) 4 D/	1Y 3	DAY	2 DAY	1 DAY	< 24 HRS.
ddress: 351 W. Huld	rard #	401	Addres	ss:										·		- TAT is			-	DATE	RESULTS I	NEEDED:
Chicago IL	606	10														RATUR			BEC	EIPT:	011	ica
Gerald Phone #: B	12 755	-953	State 8					Pho	one	#: (7			De	livera	ble P	acka	ge Ne		l: Air B	ill No.	
	12 75	5-95kg	Progra	<u>m:</u>				Fav)		, ,		STI		Oth	er	-,-	٠		
roject: Lorner Hones Suppl	//		_ /	/		# of E serva		s Ised	1,100 %	9/	/,,	/, 1/	' /			/ ,			SAN	MPLE TROL		
ampler: G. Kraemer	/ ,	CALS THE COLOR	ž / 4	<i>. F</i>	77	7	77	77	ر کی /	14	17	λ		/ /	/ /	' /		/ /s	/ 3 /a	5 /		
0/Quote #: 01/337	/ & &			E/3/	\g /	/ ₃ /3	1/2/	/ _{&} / 3		W _C	\mathbb{V}_{\wedge}	Y /	/ /					Ş	\$\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	/ L	ABOR	ATORY
FIELD ID, LOCATION	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>	Sample And The Color	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		\\ \(\) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	15/2			77	/ \	<u>/</u>		_		/_/			23	/ 	ID NUI	MBER
PID:	1/9/01	6900	5011	12 XX	1		/ X	4		X							- }			BII	116	6-01
MW-3 (51)	11/1		6.1	1/2	11	1-1	1	 		$\langle \cdot \rangle$	+	+	+-	1-1			\neg	_	_			U U
PID	19/01	9900	Soil	MX			X	4	X	M	V]				-02
Trip Blank PID:	1/4/01	0900	Water				1	1	X													7)2
				++-		+-1	Ť	Ė	 `		_		1-	11		_	7		_			
PID:								L														
													Ţ									
PID:			 	 	 									1		_		\dashv				
PID:	-								{						{	- }		- }	.			
				1-1-	11	11	+			-		_	1	1-1		-			_			
PID:																						
	_								{					1 1								
PID:			 	╂-┼-	++	+	+		 		-+					\dashv	{					
PID:	-	1				11	1		Ì		1					1	- 1	- }				
				1 1		11	1	1	<u> </u>				+			+			$\neg \uparrow$	···		
PID:			112						/		2]	4										
Lorgener 11-9-0/	RECEIVED	1/1	de)	八	9	RELI	Voui	HEC	ر ار را	7	7		1-9 4/2		RECEL	YED	Q	7	2	11-5	9:01 511
LINOUISHED	RECEIVED	· · · ·			*** *;		RELII	vQUI	SHEL	CTV						RECEI	IVED	پر		T		
MMENTS:	1						!								1				<u></u>	<u>~</u> _		·
· · · · · · · · · · · · · · · · · · ·																						
																		1	PAGE	Ē		OF

Table 4 - Summary of EGSL Analytical Results for VOCs in Groundwater Compared to TACO Tier 1 Remediation Objectives, Former Ames Supply, Downers Grove, IL.

VOCs	Groundwater Exposure Rou	•				Monitoring \	Well Sample			
Method 5035/8260	Class I	Class II	MW1	MW2	MW-200 ¹	MW3	MW-6	Trip Blank	MW-4	PW-10 ²
Chemical Compound	(mg/L)	(mg/L)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
cis-1,3-Dichloropropene	0.001	0.005	ND	ND	ND	ND	ND	ND	ND	ND
trans 1,3-Dichloropropene	0.001	0.005	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	0.7	1.0	ND	ND	ND .	ND	ND	ND	ND	ND
2-Hexanone			ND	ND	ND	ND	ND ,	ND	ŇD	ND
Methylene chloride	0.005	0.05	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone			ND	ND	ND	ND	ND	ND	ND	ND
Styrene	0.1	0.5	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	 .		ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	0.005	0.025	ND	ND	ND	0.1260	ND	ND	ND	0.1400
Toluene	1.0	2.5	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	0.2	1.0	ND	ND	ND	0.0144	ND	ND	ND	0.0133
1,1,2-Trichloroethane	0.005	0.05	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	0.005	0.025	ND	ND	ND	0.0078	ND	ND	ND	0.0085
Trichlorofluoromethane		<u> </u>	ND	ND	ND	ND	ND	ND .	ND	ND
Vinyl acetate	7.0	7.0	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	0.002	0.01	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes, total	10.0	10.0	ND	ND	ND	ND	ND	ND	ND	ND
			<u> </u>	<u> </u>		<u> </u>				·



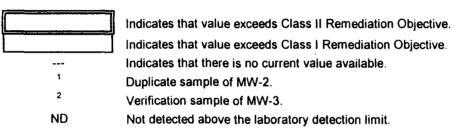
ND Not detected above the laboratory detection limit.

mg/L milligrams/Liter, equivalent to parts per million.

Table 4 - Summary of EGSL Analytical Results for VOCs in Groundwater Compared to TACO Tier 1 Remediation Objectives, Former Ames Supply, Downers Grove, IL.

VOCs	Groundwater	-				Monitoring	Well Sample			
Method 5035/8260	Class I	Class II	MW1	MW2	MW-200 ¹	MW3	MW-6	Trip Blank	MW-4	PW-10 ²
Chemical Compound	(mg/L)	(mg/L)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
cis-1,3-Dichloropropene	0.001	0.005	ND	ND	ND	ND	ND	ND	ND	ND
trans 1,3-Dichloropropene	0.001	0.005	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	0.7	1.0	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	***		ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	0.005	0.05	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	•••		ND	ND	ND	ND	ND	ND	ND	ND
Styrene	0.1	0.5	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane			ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	0.005	0.025	ND	ND	ND	0.1260	ND	ND	ND	0.1400
Toluene	1.0	2.5	ND	ND	ם מ	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	0.2	1.0	ND	ND	ND	0.0144	ND	ND	ND	0.0133
1,1,2-Trichloroethane	0.005	0.05	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	0.005	0.025	ND	ND	ND	0.0078	ND	ND	ND	0.0085
Trichlorofluoromethane	***		ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	7.0	7.0	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	0.002	0.01	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes, total	10.0	10.0	ND	ND	ND	ND	ND	ND	ND	ND

Duplicate sample of MW-2.

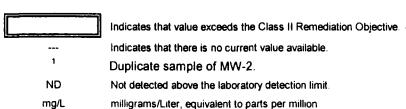

Verification sample of MW-3.

ND Not detected above the laboratory detection limit.

mg/L milligrams/Liter, equivalent to parts per million.

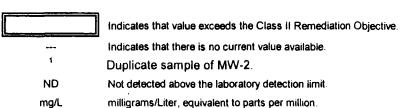
Table 4 - Summary of EGSL Analytical Results for VOCs in Groundwater Compared to TACO Tier 1 Remediation Objectives,
Former Ames Supply, Downers Grove, IL.

	Groundwater Exposure Rou	•				Monitoring \	Well Sample			
Method 5035/8260	Class I	Class il	MW1	MW2	MW-2001	MW3	MW-6	Trip Blank	MW-4	PW-10 ²
Chemical Compound	(mg/L)	(mg/L)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Acetone	0.7	0.7	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	0.005	0.025	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	0.002	0.002	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	0.001	0.001	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	•••	_	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone			ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	0.7	3.5	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	0.005	0.025	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	0.1	0.5	ND	ND	ND	ND	ND	ND	ND	ND
Chlorodibromomethane	0.14	0.14	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane			ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	0.002	0.001	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	***		ND	ND	ND	ND	ND	ND	ND	· ND
1,1-Dichloroethane	0.7	3.5	ND	ND	ND	0.0024	ND	ND	ND	0.0028
1,2-Dichloroethane	0.005	0.025	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	0.007	0.035	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	0.07	0.2	ND	ND	ND	0.0162	ND	ND	ND	0.0166
trans-1,2-Dichloroethene	0.1	0.5	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	0.005	0.025	ND	ND	ND	ND	ND	ND	ND	ND



milligrams/Liter, equivalent to parts per million.

mg/L


Table 5 - Summary of EGSL Analytical Results for SVOCs in Groundwater Compared to TACO Tier 1 Remediation Objectives, Former Ames Supply, Downers Grove, IL

	Groundwater I	ngestion			Monito	oring Well		
svocs	Exposure Rout	e Values						
Method 8270C	Class i	Class II	MW1	MW2	MW-200 ¹	MW3	MW-6	
Chemical Compound	(mg/L)	(mg/L)	mg/L	mg/L	mg/L	mg/L	mg/L	
Acenaphthene	0.42	2.1	ND	ND .	ND	ND	ND	
Acenaphthylene	•••		ND	ND	ND	ND	ND	
Aniline	•••		ND	ND	ND	ND	ND	
Anthracene	2.1	10.5	ND	ND	ND	ND	ND	
Benzoic Acid	28	28	ND	ND	ND	ND	ND	
Benzc(a)anthracene	0.00013	0.00065	ND	ND	ND	ND	ND	
Benzo(a)pyrene	0.0002	0.002	ND	ND	ND	ND	ND	
Benzo(b)fluoranthene	0.00018	0.0009	ND	ND	ND	ND	ND	
Benzo(ghi)perylene			ND	ND	ND	ND	ND	
Benzo(k)fluoranthene	0.00017	0.00085	ND	ND	ND	ND	ND	
Benzyl Alcohol			ND	ND	ND	ND	ND	
Bis(2-chloroethyloxy)methane			ND	ND	ND	ND	ND	
Bis(2-chloroethyl)ether	0.01	0.01	ND	ND	ND	ND	ND	
Bis(2-chloroisopropyl)ether			ND	ND	ND	ND	ND	
Bis(2-ethylhexyl)phthalate	0.006	0.06	ND	ND	ND	ND	ND	
4-Bromophenyl phenyl ether			ND	ND	ND	ND	ND	
Butyl benzyl phthalate	1.4	7.0	ND	ND	ND	ND	ND	
4-Chloroaniline	0.028	0.028	ND	ND	ND	ND	ND	
4-Chloro-3-methylphenol			ND	ND	ND	ND	ND	
2-Chloronaphthalene			ND	ND	ND	ND	ND	
2-Chlorophenol	0.35	0.175	ND	ND	ND	ND	ND	
4-Chlorophenyl phenyl ether		•••	ND	ND	ND	ND	ND	
Chrysene	0.0015	0.0075	ND	ND	ND	ND	ND	
Dibenzo(a,h)anthracene	0.0003	0.0015	ND	ND	ND	ИD	ND	

Table 5 - Summary of EGSL Analytical Results for SVOCs in Groundwater Compared to TACO Tier 1 Remediation Objectives, Former Ames Supply, Downers Grove, IL

	Groundwater Ingestion Exposure Route Values		Monitoring Well					
svocs								
Method 8270C	Class I	Class II	MW1	MW2	MW-200 ¹	MW3	MW-6	
Chemical Compound	(mg/kg)	(mg/kg)	mg/L	mg/L	mg/L	mg/L	mg/L	
Dibenzofuran		•••	ND	ND	ND	ND	ND	
1,2-Dichlorobenzene	0.6	1.5	ND	ND	ND	ND	ND	
1,3-Dichlorobenzene		•••	ND	ND	ND	ND	ND	
1,4-Dichlorobenzene	0.075	0.375	ND	ND	ND	ND	ND	
3,3-Dichlorobenzidine	0.007	0.033	ND	ND	ND	ND	ND	
2,4-Dichlorophenol	0.021	0.021	ND	ND	ND	ND	ND	
Diethylphthalate	5.6	5.6	ND	ND	ND	ND	ND	
2,4-Dimethylphenol	0.14	0.14	ND	ND	ND	ND	ND	
Dimethylphthalate			ND	ND	ND	ND	ND	
Di-n-butylphthalate	0.7	3.5	ND	ND	ND	ND	ND	
4,6-Dinitro-2-methylphenol			ND	ND	ND	ND	ND	
2,4-Dinitrophenol	0.014	0.14	ND	ND	ND	ND	ND	
2,4-Dinitrotoluene	0.00002	0.00002	ND	ND	ND	ND	ND	
2,6-Dinitrotoluene	0.00031	0.00031	ND	ND	ND	ND	ND	
Di-n-octylphthalate	0.14	0.7	ND	ND	ND	ND	ND	
Fluoranthene	0.28	1.4	ND	ND	ND	ND	ND	
Fluorene	0.28	1.4	ND	ND	ND	ND	ND	
Hexachlorobenzene	0.00006	0.0003	ND	ND	ND	ND	ND	
Hexachlorobutadiene	•••		ND	ND	ND	ND	ND	
Hexachlorocyclopentadiene	0.05	0.5	ND	ND	ND	ND	ND	
Hexachloroethane	0.007	0.035	ND	ND	ND	ND	ND	
Indeno(1,2,3-cd)pyrene	0.00043	0.00215	ND	ND	ND	ND	ND	
Isophorone	1.4	1.4	ND	ND	ND	ND	ND	

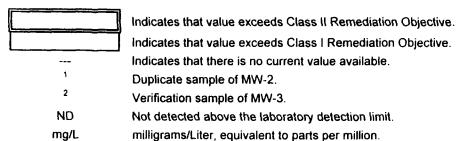
Table 5 - Summary of EGSL Analytical Results for SVOCs in Groundwater Compared to TACO Tier 1 Remediation Objectives, Former Ames Supply, Downers Grove, IL

	Groundwater Ingestion Exposure Route Values		Monitoring Well					
SVOCs					MW-200 ¹			
Method 8270C	Class I	Class II	MW1	MW2	1 1	MW3	MW-6	
Chemical Compound	(mg/kg)	(mg/kg)	mg/L	mg/L	mg/L	mg/L	mg/L	
2-Methylnaphthalene			ND	ND	ND _	ND	ND	
o-cresol	0.35	0.35	ND	ND	ND	ND	ND	
m,p-cresols			ND	ND	ND	ND	ND	
Naphthalene	0.14	0.22	ND	ND	ND	ND	ND	
2-Nitroaniline			ND	ND	ND	ND	ND	
3-Nitroaniline			ND	ND	ND	ND	ND	
4-Nitroaniline			ND	ND	ND	ND	ND	
Nitrobenzene	0.0035	0.0035	ND	ND	ND	ND	ND	
2-Nitrophenol			ND	ND	ND	ND	ND	
4-Nitrophenol			ND	ND	ND	ND	ND	
N-Nitrosodi-n-propylamine	0.0018	0.0018	ND	ND	ND	ND	ND	
N-Nitrosodiphenylamine	0.0032	0.016	ND	ND	ND	ND	ND	-
Pentachlorophenol	0.001	0.005	ND	ND	ИD	ND	ND	
Phenanthrene			ND	ND	ND	ND	ND	
Phenol	0.1	0.1	ND	ND	ND	ND	ND	
Pyrene	0.21	1.05	ND	ND	ND	ND	ND	
1,2,4-Trichlorobenzene	0.07	0.7	ND	ND	ND	ND	ND	
2,4,5-Trichlorophenol	0.7	3.5	ND	ND	ND	ND	ND	
2,4,6-Trichlorophenot	0.01	0.05	ND	ND	ND	ND	ND	

Indicates that value exceeds the Class II Remediation Objective.

Indicates that there is no current value available.

Duplicate sample of MW-2.


ND Not detected above the laboratory detection limit.

milligrams/Liter, equivalent to parts per million.

mg/L

Table 4 - Summary of EGSL Analytical Results for VOCs in Groundwater Compared to TACO Tier 1 Remediation Objectives, Former Ames Supply, Downers Grove, IL.

	Groundwater Exposure Rou	-				Monitoring '	Well Sample			
Method 5035/8260	Class I	Class II	MW1	MW2	MW-200 ¹	MW3	MW-6	Trip Blank	MW-4	PW-10 ²
Chemical Compound	(mg/L)	(mg/L)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Acetone	0.7	0.7	ND	ND	ND	ND	ND	ND	ND	ND
Benze ne	0.005	0.025	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	0.002	0.002	ND	ND	ND .	ND	ND	ND	ND	ND
Bromoform	0.001	0.001	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane			ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone			ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	0.7	3.5	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	0.005	0.025	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	0.1	0.5	ND	ND	ND	ND	ND	ND	ND	ND
Chlorodibromomethane	0.14	0.14	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane			ND	ND	ND	ИD	ND	ND	ND	ND
Chloroform	0.002	0.001	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane			ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	0.7	3.5	ND	ND	ND	0.0024	ND	ND	ND	0.0028
1,2-Dichloroethane	0.005	0.025	ND	ND	ND .	ND	ND	ND	ND	ND
1,1-Dichloroethene	0.007	0.035	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	0.07	0.2	ND	ND	ND	0.0162	ND	ND	ND	0.0166
trans-1,2-Dichloroethene	0.1	0.5	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	0.005	0.025	ND	ND	ND	ND	ND	ND	ND	ND

Table 5 - Summary of EGSL Analytical Results for SVOCs in Groundwater Compared to TACO Tier 1 Remediation Objectives, Former Ames Supply, Downers Grove, IL

SVOCs		Groundwater Ingestion Exposure Route Values			Monito	oring Well		
Method 8270C	Class I	Class II	MW1	MW2	MW-2001	MW3	MW-6	
Chemical Compound	(mg/L)	(mg/L)	mg/L	mg/L	mg/L	mg/L	mg/L	
Acenaphthene	0.42	2.1	ND	ND	ND	ND	ND	
Acenaphthylene			ND	ND	ND	ND	ND	
Aniline	-		ND	ND	ND	ND	ND	
Anthracene	2.1	10.5	ND	ND	ND	ND	ND	
Benzoic Acid	28	28	ND	ND	ND	ND	ND	
Benzo(a)anthracene	0.00013	0.00065	ND	ND	ND	ND	ND	
Benzo(a)pyrene	0.0002	0.002	ND	ND	ND	ND	ND	
Benzo(b)fluoranthene	0.00018	0.0009	ND	ND	ND	ND	ND	
Benzo(ghi)perylene	***		ND	ND	ND	ND	ND	
Benzo(k)fluoranthene	0.00017	0.00085	ND	ND	ND	ND	ND	
Benzyi Alcohol		•••	ND	ND	ND	ND	ND	<u> </u>
Bis(2-chloroethyloxy)methane		•••	ND	ND	ND	ND	ND	
Bis(2-chloroethyl)ether	0.01	0.01	ND	ND	ND	ND	ND	
Bis(2-chlorolsopropyl)ether	_	•••	ND	ND	ND	ND	ND ·	
Bis(2-ethylhexyl)phthalate	0.006	0.06	ND	ND	ND	ND	ND	
4-Bromophenyl phenyl ether			ND	ND	ND	ND	ND	
Butyl benzyl phthalate	1.4	7.0	ND	ND	ND	ND	ND	
4-Chloroanillne	0.028	0.028	ND	ND	ND	ND	ND	
4-Chloro-3-methylphenol			ND	ND	ND	ND	ND	
2-Chloronaphthalene			ND	ND	ND	ND	ND	
2-Chlorophenol	0.35	0.175	ND	ND	ND	ND	ND	
4-Chlorophenyl phenyl ether			ND	ND	ND	ND	ND	
Chrysene	0.0015	0.0075	ND	ND	ND	ND	ND	
Dibenzo(a,h)anthracene	0.0003	0.0015	ND	ND	ND	ND	ND	

Indicates that value exceeds the Class II Remediation Objective.

Indicates that there is no current value available.

Duplicate sample of MW-2.

ND

Not detected above the laboratory detection limit.

mg/L milligrams/Liter, equivalent to parts per million

Email: into@glalabs.com (847) 808-7766 FAX (847) 808-7772

28 November 2001

Gerald Kraemer
EGSL
351 W. Hubbard, Suite 401
Chicago, IL 60610
RE: Former Ames Supply

Enclosed are the results of analyses for samples received by the laboratory on 11/16/01. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Andy Johnson Project Manager

Email: info@glalabs.com (847) 808-7786 FAX (847) 808-7772

EGSL 351 W. Hubbard, Suite 401

Chicago IL, 60610

Project Former Ames Supply

Project Number: 011332 Project Manager: Gerald Kraemer

Reported: 11/28/01 14:55

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	B111255-01	Weter	11/16/01 08:30	11/16/01 08:29
MW-2	B111255-02	Water	11/16/01 09:00	11/16/01 08:29
MW-3	B111255-03	Water	11/16/01 10:00	11/16/01 08:29
MW-200	B111255-04	Water	11/16/01 09:30	11/16/01 08:29
MW-6	B111255-05	Water	11/16/01 10:30	11/16/01 08:29
Trip Blank	B111255-06	Water	11/16/01 00:00	11/16/01 08:29

Great Lakes Analytical

The results in this roport apply to the sumples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Andy Johnson, Project Manager

Page 1 of 29

Email info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGŞL

351 W. Hubbard, Suite 401 Chicago IL, 60610 Project: Former Aines Supply

Project Number: 011332

Project Manager: Gerald Kraemer

Reported: 11/28/01 14:55

Volatile Organic Compounds by EPA Method 8260B

Great Lakes Analytical

		Reporting	11	Tul	B1			14-4-4	
Analyte	Result	Limit	Umits	Dilution	Batch	Propared	Analyzed	Method	Notes
MW-1 (B111255-01) Water	Sampled: 11/16/01 08:30	Received:	11/16/01	08:29					C1,C4,C1
Acetone	ND	10.0	ug/ I	1	1110388	11/21/01	11/21/01	5030B/8260B	
Benzone	ND	2.00	-	10	•	lP .		•	
Bromodichloromethane	MD	2.00	-	•		•	•	•	
Bromoform	, ND	2.00	•	-	•	•	•	•	
Bromomethene	מא	2.00	•	•	•	•	-	-	
2-Butanone	ND	10.0	•		-	•	•	•	
Carbon disulfide	ND.	2.00	•	•	*	•	•	•	
Carbon terrachloride	ND.	2.00	•	-	•	-	•	-	
Chlorobenzene	ND	2.00	•		•	•	•	•	
Chlorodibromomethene	ND	2.00	-	-	•	•	•	•	
Chloroethane	ND	2.00	-	•	•	•	-	• .	
Chloroform	ND	2.00			-	•		•	
Chloromethane	ND	2.00	-	•	•	•			
1,1-Dichloroethane	ND	2.00	•		•	-	•	•	
1,2-Dichloroethaue	ND	2.00	-		-	•	•	•	
1,1-Dichloroethene	ND	2.00	-	•		•	•	•	
cis-1.2-Dichloroothene	ND	2.00	-		•	•	•	•	
trans-1,2-Dichloroethene	ND	2.00	-	10	-			-	
1,2-Dichloropropane	ND	2.00	-		•	•		-	
cis-1,3-Dichloropropene	מא	2.00	•			•	•	•	
trans-1,3-Dichloropropene	ND	2.00	-	•	-	•	•		
Ethylbenzene	ND	2.00	-			•	•	•	
2-Hexanone	ND	10.0	-	•	•	•	•	•	
Methylene chionde	ND	2.00	•	•	•	•		•	
4-Methyl-2-pentanone	ND	10 0	-	•					
Styrene	ND	2.00	-	•	-		•		
1,1,2,2-Tetrachloroethane	ND	2.00	-						•
Tetrachloroethene	DN DN	2.00		-		•	-	•	
Toluene	ND ND	2.00		•	•		•	-	
		2.00		•	•	-	-	_	
I,I,I-Trichloroethane	ND					•	-	-	
1,1,2-Trichloroethane	ND	2.00	-	-		•	•	-	
Trichloroethene	ND	2.00	-	-	-	-	<u>•</u>	-	
Trichlorofluoromethane	סא	2.00	-	-	-	-	-	•	
Viny) sostate	ND	2.00	_	-	-	•	<u>-</u>	-	
Vinyl chloride	ND	2.00	•	-		• -		•	
Total Xylenes	NDND	2.00		-	 -			·	
Surrogate: Dibromofluorometh		106 %		1-111	•	•	•	•	
Surrogate: 1,2-Dickloroethane	-d4	107 %		1-104	~	•	•	-	OS
Surrogate: Toluene-d8		190 %	95.1	1-105	•	•	•	•	
Surrogate: 4-Bromofluorobene	ene	90.6 %	89.6	5-105	•	•	•		

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of castody document. This analytical report must be reproduced in its entirety.

Andy Johnson, Project Manager

Page 2 of 29

Prom. Depote United 347-3031 172 10 000 and 1000010.

1380 Busch Parkway Buffalo Grove, Illinois 60089

Email: info@glalebs.com (847) 808-7766 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suize 401 Chicago IL, 60610 Project Former Ames Supply

Project Number: 011332 Project Manager: Gerald Kraemer Reported: 11/28/01 14:55

Volatile Organic Compounds by EPA Method 8260B

Great Lakes Analytical

Analyte	Result	Reporting Limit	Umts	Dilution	Batch	Propered	Analyzed	Method	Notes
MW-2 (B111255-02) Water	Sampled: 11/16/01 09:00	Received:	11/16/01	08:29					G1,G4,G15
Acetone	ND	10.0	ug/l	1	1110388	11/21/01	11/21/01	5030B/8260B	
Benzene	ND	2.00	•	•	•	*	•	•	
Bromodichloromethane	ND	2.00	-	•	•	•1	•	•	
Bromoform	ND	2.00	-	•	-	•	•	•	
Bromomerhane	ND	2.00	-	•	•	•	•		
2-Butanone	ND	10.0	-	-	•	•	-	•	
Carbon disulfide	ND	2.00	•	•	•	•	•	•	
Carbon tetrachloride	ND	2.00	•	•	•	v	•	*	
Chlorobenzene	ND	2.00	-	•		•	•	-	
Chlorodibromomethans	ND	2.00	-	•	-	•	•	n	
Chloroethane	ND	2.00	•	•	-		•	-	
Chloroform	ND	2.00	•	•	•	*	•	•	
Chloromethane	ND	2.00	•	•	- '	•	•	•	
1,1-Dichloroethane	ND	2.00	-	•	•		-	*	
1_2-Dichlorosthase	ND	2.00	•	•	*		•	•	•
1.1-Dichloroethene	ND	2.00	•	-	•	•	•	-	
cis-1,2-Dichleroothene	ND	2.00	•	•	•	•	•	•	
trans-1,2-Dichloroethene	ND	2.00	•	•	•	•	•	•	
1,2-Dichloropropane	ND	2.00	•	•	•	•	•	•	
cis-1,J-Dichloropropene	ND	2.00	•	•		•	•	-	
trans-1,3-Dichloropropene	ND	2.00		•	•	•	-		
Ethylbenzen•	ND	2.00	•	•	•	•	•	•	
2-Hexanone	ND	10.0	•	•	•	•	•		
Methylene chloride	ND	2.00	•	•	•	•	•	•	
4-Methyl-2-penranone	ND	10.0	•	•		,,	-		
Styrene	ND	2.00	-	•	•		•		
1,1,2,2-Tetrachloroethane	ND	2.00	•	•	•	-	•		
Tetrachloroethene	ND	2.00	-	•	•	•	•	-	
Tohiene	ND	2.00		•	-	-	-	•	
1,1,1-Trichloroethane	ND	2.00	-	•	•	•		-	
1,1,2-Trichloroethane	ND	2.00	-	•	•		•	-	
Trichloroethene	ND	2.00	•	•	•		-	•	
Trichloroffporomethane	ND	2.00	•	•	•		•	-	
Vinyl ecetate	ND	2.00	•	•	-		-	-	
Vinyl chloride	ND	2.00	-	•	•	•			
Total Xylenes	ND	2.00	•	•	•	•	•	•	
Surrogase: Dibromofluorometh	ane	106 %	91.1	<u></u>	•	•	- , -		
Surrogate: 1,2-Dichloroeikane-		106 %		-104	•	•	•	-	OS
Surrogate: Toluene-d8		101 %		-105	•	•		•	03
Surrogate: 4-Bromoflyorobenze	-40	90.8 %		-105 F-105	•			_	

Great Lakes Analytical

The results in this report apply to the samples analysed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Andy Johnson, Project Manager

Page 3 of 29

Email: info@glalabe.com (647) 808-7766 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401

Chicago IL, 60610

Project: Former Ames Supply

Project Number: 011332

Project Manager: Gerald Kraemer

Reported:

11/28/01 14:55

Volatile Organic Compounds by EPA Method 8260B

Great Lakes Analytical

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Propared	Analyzed	Method	Nones
MW-3 (B111255-03) Water	Sampled: 11/16/01 18:00	Received:	1/16/01 08	:29					G1,G4,G1
Acetone	ND	10.0	ugi	1	1110388	11/21/01	11/21/01	5030B/8260B	
Benzene	ND	2.00	•	•	•	-	-	-	
Bromodichloromethane	ND	2.00	•	•	•	•	•	-	
Bromoform	ND.	2.00	•	•	•	4	•	-	
Bromomethane	ND	2.00	•	•	•	-	-	•	
2-Butanone	ND	10.0	• .	-		н	-		
Carbon disulfide	ND	2.00	•	•	•		-		
Carbon tetrachlonde	ND	2.00	•	•	•	•		•	
Chlorobenzene	ND	2.00	•	-	•	•	•	-	
Chlorodibromomethane	ND	2.00	•	•	•	19	-	-	
Chloroethane	ND	2.00	•	•	•	•	•	•	
Chloroform	ND	2.00	•	•	•		•	н	
Chloromethane	ND	2.00	•	•	-	•	•	4	
1,1-Dichloroethane	2.41	2.00	•	•	•		•	•	
1,2-Dichleroethane	ND	2,00	•	•	•		•	•	
1.1-Dichloroemene	ND	2,00	•	•		-	-	-	
cis-1,2-Dichleroethens	16.2	2.00	•	•	•	•		•	
trans-1,2-Dichloroethene	ND	2.00	•	•	•	•	•	19	
1,2-Dichloropropane	ND	2.00	•		•		•	-	
cis-1,3-Dichloropropene	ND	2.00	•		-		-	•	
rans-1,3-Dichloropropene	ND	2.00	•		•	•	-		
Ethylbenzene	ND	2.00	•	•	-				
2-Hexanone	ND	10.0			•	-		•	
Methylene chloride	מא	2.00	•						
4-Methyl-2-pentanone	ND	10.0			-	•	-		
ч-местут-2-репламие Styrene	ND	2.00			•	-	_	-	
1.1.2.2-Tetrachloroethane	ND	2.00				_		-	
Tetrachloroethene	126	2.00					_	-	
Toluene	ND	2.00	•		•	_	_	-	
i.l.1-Trichleroethane		2.00		-		_	_	-	
1.1.2-Trichloroethane	14.4 ND	2.00			•	_	_	-	
Trichieroethene	· -	2.00		-	_	_	_	_	
Prichlorofluoromethane	1.79 ND	2.00			•	_	_		
	· -			_	-	-	_	-	
Vinyl acctate	ДИ	2.00		-			•	•	
Vinyl chloride	ďΛ	2.00		-	•	•	•		
Total Xylenes	ND	2.00					<u>.</u>		
Surrogate: Dibromofluorometh		106 %	91.1-1		•	*	•	•	
Surrogate: 1,2-Dichloroethane	-64	107 %	85.1-1		•	•	•	•	OS
Surrogate: Toluene-d8		101 %	95.1-1	05	•	- .	•	•	
Surrogose. 4-Bromaftuorobera	ene	90.Z %	89.6-1	د0	•	-	-		

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Andy Johnson, Project Manager

Page 4 of 29

The state of the s

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

Project Former Ames Supply

351 W. Hubbard, Suite 401 Chicago IL, 60610 Project Number: 011332
Project Manager: Gerald Kracmer

Reported: 11/28/01 14:55

Volatile Organic Compounds by EPA Method 8260B

Great Lakes Analytical

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-200 (B111255-04) Water	Sampled: 11/16/01 09:30	Received:	11/16/01	08:29		· · · · · · · · · · · · · · · · · · ·			G1,G4,G15
Acctoine	ND	10.0	ug/l	1	1110388	11/21/01	11/23/01	5030B/8260B	
Benzene	ND	2.00	•	•	•	••	-	•	
Bromodichloromethane	ND	2.00	•	•	•	•	•	•	
Bromoform	ND	2.00		•	•	•	•	•	
Bromomethane	ND	2.00	•	•	•	•		*	
2-Butanone	ND	10.0	•	•	•	•	-	-	
Carbon disulfide	ND	2.00	•	•		•	•	M	
Carbon tetrachionide	ND	2.00	-	•	•	•	-		
Chlorobenzene	ND	2.00	-	-	-	-	•	**	
Chlorodibromomethane	ND	2.00	•	• .	•		-	*	
Chloroethane	ND	2.00		•	•	•	•	•	
Chloroform	ND	2.00	•		•		•		
Chloromethane	ND	2.00	-	•	•	17	-	•	
1,1-Dichlorocthane	ND	2.00	-	•			-	•	
1.2-Dichloroethanc	ND	2.00	•	-	-		•	•	
1.1-Dichloroethene	ND	2.00		•		-	-	•	
cis-1,2-Dichloroethene	ND	2.00	•	•	•	-	•	•	
mans-1,2-Dichloroothene	ND	2.00	•	•		18	-		
1,2-Dichloropropane	ND	2.00	•	•	•	•	•	•	
cis-13-Dichloroprupene	ND	2.00		•	-	•		•	
trans-1,3-Dichloropropene	ND	2.00	-	-	•	•	#	•	
Ethylbenzene	ND	2.00	•	•	•			•	
2-Hexanope	ND	10.0	•		•	,		•	
Methylene chloride	ND	2.00		•	•	-	-	•	
4-Methyl-2-pentanone	אס מא	10.0	•			•		•	
Styrene	ND	2.00		-			-		
1,1.2,2-Tetrachloroethane	מא	2.00				_	-	-	
Tetrachieroethene	ND	2.00		•		•		_	
Toluene	ND	2.00		-	•		_	-	
l .l .l-Trichloroethane		2.00				<u>"</u>	_		
• •	ND ND	2.00	•	-	•	_	-		
1,1,2-Trichloroethane Trichloroethane	• -	2.00	•	_		_	-	-	
	ND			_		-	-	•	
Trichlorofluoromethanc	ND	2.00		_	-	•	-	•	
Vinyl acetate	ND	2.00	Ī	_	•	-	•		
Vinyl chloride	ND	2.00	•	-	_	•	•		
Total Xylenes	<u> </u>	2.00						<u> </u>	
Surrogave: Dibromoftvorovnetkas		110 %	91.1-1	11	•	•	•	•	
Surrogate: 1,2-Dichloroethane-d	4	106 %	85.1-1	04	•	*	•	-	OS
Surragate: Tolwene-d8		101 %	95.1-1	05	-	•	-	~	
Surrogate: 4-Bromofluorobenzen	•	92.6 %	89.6-1	05	-	~	•	-	

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Andy Johnson, Project Manager

Page 5 of 29

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401 Chicago IL, 60610 Project: Former Ames Supply

Project Number: 011332 Project Manager: Gerald Kraemer

Reported: 11/28/01 14:55

Volatile Organic Compounds by EPA Method 8260B

Great Lakes Analytical

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-6 (B111255-05) Water	Sampled: 11/16/01 10:30	Received:	11/16/01	08:29					G1,G4,G15
Acetone	ND	10.0	սցմ	1	1110388	11/21/01	11/23/01	5030B/8260B	
Benzenc	NID	2.00	-	-	*	•		•	
Bromodichloromethane	ND	2.00	•	•	•	-		•	
Bromoform	ND	2.00	•	•	*	•	•	*	
Bromemethane	ND	2.00	•	•	•	-	-	•	
2-Butanone	ND	10.0	•	*		•	~	•	
Carbon disulfide	ND	2.00	•	•	•	•	~	•	
Carbon tetrachlorade	ИD	2.00	•	•	•	-	•	*	
Chlorobenzeac	ИD	2.00	•	•	•	•	•	*	
Chlorodibromomethane	ND	2.00	•	•	~	•	•	•	
Chloroethana	ND	2.00	•	•	~	•	•	•	
Chloroform	ND	2.00	-		•	•	•	•	
Chloromethane	ND	2.00	•	4	•	•		-	
1,1-Dichloroethane	ND	2.00	•	-	•	*	-	-	
1,2-Dicklomethane	ND	2.00	•	•		•	•	-	
1,1-Dichloroethene	.VD	2 00	•	•	•	•	-		
crs-1,2-Dichlomethene	ND	2.00	•	•	•	•	-	**	
trans-1,2-Dichloroethene	ИО	2.00	-	•	•	Ħ	•		
1,2 Dichloropropano	ND	2.00	•	•	-	•	•	•	
cis-1,3-Dichloropropene	ND	2.00	•	•	₹.	•	-	•	
trans-1,3-Dichloropropene	ИD	2.00	-	•	• .	-	•	-	
Ethylbenzene	ИD	2.00	•	•	-	•	-		
2-Hexanone	סא	10.0	•	•	•	•	•	•	
Methylene chloride	ND	2.00	•	•	•	•	•	•	
4-Methyl-2-pentanone	ND	10.0	•	•	•	•		•	
Styrene	ND	2.00	-	•	•	•	•	-	
1.1.2.2-Tetrachi oroothano	מא	2.00	-	•		•		•	
Terrachloroethene	ИD	2.00	•		•	-	v	•	
Toluase	ND	2.00	•	•	•		•	•	
1.1.1 Trichloroethane	ND	2.00	•	•	•	•		-	
1.1.2 Trichlomethane	ND	2,00		•	•	•		•	
Trichloroethoss	ND	2.00	•	•	•	•		•	
Trichlorofluoromenane	ND	2.00	-	•	4	•	-		
Vinyl scetate	ИD	2.00	•	•	-	•	**	•	
Vinyl chloride	ND	2.00	•	•	-	•	•		
Total Xylenes	N'D	2.00	•	•	•	•	•	•	
Surrogate Dibromo/horomet	hane	110%	91.1	-111	•	#	•	-	
Surrogate: 1,2-Deckloroethane		105 %		-104		#		•	05
Surrogate. Tohuene-d8		101 %		1-105	•	-	•	-	0,
Surragaie: 4-Bromofluorobens	nene	930%		⊊105	•	-	•	-	

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Andy Johnson, Project Manager

Page 6 of 29

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

.

EGSL

Project: Former Ames Supply

351 W. Hubbard, Suite 401 Chicago IL, 60610 Project Number: 011332 Project Manager: Gerald Kraemer

Reported: 11/28/01 14:55

Volatile Organic Compounds by EPA Method 8260B

Great Lakes Analytical

Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
						перши	Amiyaa	Dieseles.	
Trip Blank (B111255-06) Water			red: 11/16/9	1 08:29					G1,G4,G1
Acetone	ND	10.0	u g /l	1	1110388	11/21/01	11/23/01	5030B/8260B	
Bonzene	ND	2.00	•	-	•	4	•	•	
Bromodichloromethane	ND	2.00	•		-	u u	•	-	
Bromoform	ND	2.00	•	•	•	•	•	-	
Bromomethane	ND	2.00	•	•		•	•	**	
2-Butanone	ND	10.0	•	•	•	•	•	•	
Carbon disulfide	ND.	2.00	•	•	•	•	*	•	
Carbon tetrachloride	ND	2.00	-	•	•	•	•	•	
Chlorobenzene	ND	2.00	-	•		•	-	*	
Chlorodibromomethane	ND	2.00	•	•	•	•	•	•	
Chlorochane	ND	2.00		•		•	-	•	
Chloroform	ND	2.00	-	•	•	•	-	•	
Chloromethane	ND	2.00	-	•	•	•	•	•	
1,1-Dichloroethane	ND	2.00	•	••	"	•	-		
1,2-Dichloroethane	ND	2.00	•	-	•	-	-	•	
1,1-Dichloroetheae	ND	2.00	-	•	•	-	-	4	
cis-1,2-Dichloroethene	ND	2.00		•	•	-	•	-	
trans-1,2-Dichloroetheae	ND	2.00	-	•	-	•		•	
1,2-Dichloropropane	ND	2.00	•	•	•	•	•	-	
cis-1,3-Dichloropropenc	ND	2.00	•	•	H	•	•		
trans-1,3-Dichloropropene	ND	2.00	-	•	•	•	-	4	
Ethylbenzese	ND	2.00	•	-	•	•	•	-	
2-Hexanone	ND	10.0	•	•	-	-	•	•	
Methylene chloride	ND	2.00	•	•	•		•	•	
4-Methyl-2-pentanone	ND	10.0	•	•	•	•	•	•	
Styrene	ND	2.00	•	•	•	-	•		
1,1,2,2-Tetrachloroethane	ND	2.00	•	•	•	-	-		
Tetrachloroethene	ND	2.00	-	•	-	-	-	•	
Toluene	ND	2.00	•	•	•	-	•	•	
1,1,1-Trichloroethanc	ИD	2.00	-	•	•	-		•	
1.1.2-Trichloroethme	ND	2.00	•	•	•	•	•		
Priobloroethene	ND	2.00	•	•	•	-	-	•	
Trichlorofluoromethane	ND	2.00	-	•	•	-	-	•	
Vinyl acetate	ND	2.00	-	•	•	-	•	•	
Vinyl chloride	ND	2.00	•	-	•	•	•		
Total Xylenes	ND	2.00		•	•	-	•	•	
Surrogate: Dibromofhioromethane		109 %	91.1-11	 -	-	•		,	·
Surrogate: 1,2 Dichloroethane-d4	· · · · · · · · · · · · · · · · · · ·	104 %	85.1-10		•			•	
Surrogate: Toluene-d8		100%	95.1-10						
Surrogate: 4-Bromoffuorobengene		4.0%	89.6-10		•			•	

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analysical report must be reproduced in its entirety.

Andy Johnson, Project Manager

Page 7 of 29

THE RESERVE THE PROPERTY OF TH

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

Project: Former Asnes Supply

351 W. Hubbard, Suite 401 Chicago IL, 60610 Project Number: 011332 Project Manager: Gerald Kraemer Reported: 11/28/01 14:55

Semivolatile Organic Compounds by EPA Method 8270C

Great Lakes Analytical

Analyte	Result	Reporting Limit	Units	Dilonon	Baich	Prepared	Analyzed	Method	Notes
MW-1 (B111255-01) Water	Sampled: 11/16/01 08:30	Received:	11/16/01	08:29					0
Acenaphthene	ND	2.00	u g /]	ı	1110381	11/21/01	11/27/01	EPA 8270C	
Acenaphthylene	ND	2.00	•	•	•		•		
Aniline	ND	2.00	•	•	•	•	"	•	
Anthracene	ND	2.00	•	•	-	•	*	•	
Benzoic acid	ND	10.0	•	•	"	•	•	•	
Benz (a) anthracens	ND	2.00	•		₹	•	•	•	
Benzo (a) pyrenc	ND.	2.00	•	•	•	•	4	-	
Benzo (b) fluoramhene	ND	2.00	•		•	•	*	и	
Bonzo (ghi) perylene	ND	2.00	•	•	•	•		•	
Benzo (k) fluoranthene	ND	2.00	•		*	•	id.	•	
Benzyl alcohol	ND	2.00	•	-	-	-	•	-	
Bis(2-chloroethoxy)methane	ND	2.00	-		•	•	•	•	
Bis(2-chloroethyl)ether	ND	2.00	-	•	•	•	•	•	
Bis(2-chloroisopropyl)ether	ND	2.00	•	•	-	•	-	4	
Bis(2-ethylhexyl)phthalate	ND	10.0	-	•	•	-	•	•	
4-Brosnophenyl phenyl ether	ND	2.00	-	•	-	•	-	•	
Butyl benzyl phthalate	ND	2.00	-	•	•	•	"	n	
4-Chloroaniline	ND	2.00	•	•	-	•		-	
4-Chloro-3-inethylphenol	ND	2.00	•	•	•	•	-	•	
2-Chlorouaphthalene	ND	2.00		•	-	•	•	•	
2-Chlorophenol	ND	2.00	•	•	•	•	•	•	
4-Chlorophenyl phenyl ether	ND	2.00	-		-	-	•	-	
Chryscoe	ND	2.00	•	•	•	•			
Dibenz (a,h) anthracene	ND	2.00		•	-	•	w	•	
Dibenzofuran	ND	2.00	•	•		•		•	
1,2-Dichlorobenzene	ND	2.00				•	-		
1,3-Dichlorobenzene	ND	2.00	•	•	-	•	•		
1.4-Dichlombenzene	ND	2.00		•	-	-	-		
3,3'-Dichlorobenzone	ND	10.0	•	•	•	•	•	H	
2,4-Dichlorophenol	ND	2.00	-	-	-			-	
Diothyl phthalate	ND	2.00	•	-	•		-	-	
2,4-Dimethylphenol	ND	2.00	•	-	•	•	-		
Demethyl phthalate	מא	2.00	•	•	•	•	-	•	
Di-n-butyl phthalote	ND	10.0	•	•	•	-		-	
4,6-Dinitro-2-methylphenol	ND	10.0	•	-		-	**	•	
2,4-Dinitrophenol	ND	10.0	-	-	•	•	•		
2,4-Dinitrotoluene	ND	2.00	•	-	-	-		••	
2,6-Dinitiotoluene	ND	2.00	•	-		•	•	-	
Di-n-octyl phthalate	ND	2.00	-	•					
• •	ND	2.00							
Fluoranthene	ND	2.00		-					
Fluorene			-			 	-		
Hexachlorobenzene	ND	2.00	-	•	-	•	-	₩	

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirely.

Andy Johnson, Project Manager

Page 8 of 29

From Deople (Aprilla 1947-1968-1977) 1970 De (Alla 1929) All

1380 Busch Parkway Buffalo Grove, Illinois 50089 Email: Info@glalabs.com (847) 808-77768 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401

Chicago IL, 60610

Project: Former Ames Supply

Project Number: 011332
Project Manager: Gerald Kraemer

Reported: 11/28/01 14:55

Semivolatile Organic Compounds by EPA Method 8270C

Great Lakes Analytical

		Reporting							
Analyte	Result	انسا	Units	Dilucion	Batch	Prepared	Analyzed	Method	Notes
MW-1 (B111255-01) Water	Sampled: 11/16/01 08:30	Received:	11/16/01	08:29					O3
Hexachlorobutadiene	ND	2.00	ุนg/ไ	1	1110381	11/21/01	11/27/01	EPA 8270C	
Hexachlorocyclopentadicae	ND	2.00	•	•	**	•	•	•	
Hexachioroethane	ND	2.00	•		H	•	-	•	
Indeno (1,2,3-cd) pyrene	ND	2.00	•	11	••	•	-	•	
Isophorone	ND	2.00		**		•	-	•	
2-Methylnaphthalene	ND	2.00	n	•		•		**	
o-Cresol	ND	2.00	-	•	•	•	4	**	
m,p-Cresols	ND	2.00	•	•	-	•	•	•	
Naphthalene	ND	2.00	•	-	-	•		4	
2-Nitroemiline	ND	10.0	•	•		-	•		
3-Nitrogniline	ND	10.0	**	•	**	•	**	•	
4-Nitroaniline	ND	10.0	-	•	4	•	•	h	
Nitrobenzene	ND	2 00	-	•	*	•	••	-	
2-Nitrophenol	ND	2.00	*	•	•	•	•	•	
4-Nitrophonol	ND	10.0	-	*	•	•	-	•	
N-Nitrosodi-n-propylamine	ND	2.00	-	•	-	•	-	•	•
N-Nitrosodiphenylamme	ND	2.00	•	-	•	•	-	•	
Pentachiorophenol	ND.	10.0	•		•	•	•	•	
Phonanthrone	ND	2.00	-	••		•	-	•	
Phenol	ND	2.00	-	•	-	•	-	•	
Ругеце	ND	2.00	-	•	•	•	-	n	
1,2,4-Trichlorobenzene	ND	2.00	-	-	-	•	•		
2,4,5-Trichlorophenol	ND	10.0	•	•	-	•	•	-	
2,4,6-Trichlorophenol	ND	2.00			•	•	n	•	
Surrogate: 2-Fluorophenai		11.7%	10-	70 3	•	•	,	*	~
Surrogate. Phenal-16		8.99 %	10.8	-41.4	-	•	~	•	Od
Surrogute: Nitrobenzene-dS		26.2 %	38.8	ر.98	•	•	•	~	04
Surrogate: 2-Fhuoroblphenyl		18.7 %	38-	99.3	-	•	•		Of
Surrogate: 2,4,6-Tribromopher	rol	16.9 %	10-	122	-	•	•	-	•
Surrogate: p-Terphenyl-d14		27.0 %	14.5	-131	-	•	•		

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Andy Johnson, Project Manager

Page 9 of 29

PIONE DODGE CHIEF OF DECISE 10.

1380 Busch Parkway Buffalo Grove, Illinois 60089 Email: info@glalabs.com (847) 908-7766 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401 Chicago IL, 60610 Project: Former Ames Supply

Project Number: 011332 Project Manager: Gerald Kraemer

Reported: 11/28/01 14:55

Semivolatile Organic Compounds by EPA Method 8270C

Great Lakes Analytical

Oteat Lakes Analytical											
Analyte	Result	Reporting Limit	Units	Dilution	Bewh	Prepared	Analyzed	Method	Note		
MW-2 (B111255-02) Water	Sampled: 11/16/01 09:00	Received:	11/16/01	08:29		_			0		
Acenaphthene	ND	2.00	ug/l	1	1110381	11/21/01	11/27/01	EPA 8270C			
Acenaphthylene	ND	2.00	•	-	•	•	-	-			
Aniline	ND	2.00		•	•	•	-	•			
Anthracene	ND	2.00	"	•	*	•	-	•			
Benzoic acid	ND	10.0	•	-	•	•		-			
Benz (a) anthracene	ND	2.00	•	-	7	•	*	10			
Benzo (a) pyrene	ND	2.00	. •	•	•	•		•			
Benzo (b) fluoranthene	ND	2.00	•	•	•	••	.0	•			
Benzo (ghi) perylone	ND	2.00	-	•	•	**	•	-			
Benzo (k) fluoranthene	ND	2.00			•	•	•	•	•		
Benzyl sloohol	ND	2.00	•	•	•	•	-				
Bis(2-chloroethoxy)methane	ND	2.00	•	•	-	•		•			
Bis(2-chloroethyl)ether	ND	2.00		•	-	•	•	•			
Bis(2-chlorosopropyl)ether	ND	2.00	•	•	-	•	19	•			
Bis(2-ethylhexyl)phthalate	ND	10.0	•	•		-	••	•			
4-Bromophenyl phenyl ether	ND	2.00	•		•	•		•			
Butyl benzyl phthalate	ND	2.00	•	•		•					
4-Chloroanime	ND	2.00	-	-	•	•	-	•			
4-Chloro-3-methylphenol	ND	2.00	•	•	•	•	-	•			
2-Chioronaphthalene	ND	2.00	•	•	•	-	•				
2-Chlorophenol	מא	2.00	•	•	-	-		•			
4-Chlorophenyl phenyl ether	ND	2.00		•		•	•	-			
Chrysene	ND	2.00	•	•	•	•		•			
Dibenz (a,h) anthracene	ND	2.00	•		•	-		•			
Dibenzofuras	ND	2.00	•	•	•		•				
1,2-Dichlorobenzene	ND	2.00	•		•	•	-	•			
1,3-Dichlorobenzene	ND	2.00		•	4	•					
1.4-Dichlorobenzene	ND	2.00	•			•		•			
3.3'-Dichlorobenzidine	ND	10.0					-				
2,4-Dichlorophenol	ND	2.00			•	-		•			
Drothyl phthelate	ND	2.00			•	-					
2,4-Dimethylphonol	ND	2.00	•	•		_	-				
Directly I phthalase	ND	2.00	•		•	-		u			
Di-n-butyl phthalate	ND	10.0	•		•	•					
4.6-Dinitro-2-methylphenol	ND	10.0	•	-	•						
2,4-Dinitrophenol	ND	10.0	•	-	•	*					
2,4-Dinitrotolpens	ND	2.00		-							
2,6-Dinitrotoluene	ND ND	2.00	-		•			-			
Di-n-octyl phthalate	ND	2.00	-		•						
Fluoranthene	D/D	2.00		_	•			-			
rivorenmene Fluorene	= :			-		•	-	-			
	ND	2.00	•	_	_	-		-			
Hexachlorobenzene	ND	2.00	•	-	-	•	**	•			

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Andy Johnson, Project Manager

Page 10 of 29

THE RESERVE THE RESERVE OF THE PROPERTY OF THE

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EG\$L

Project: Former Ames Supply

351 W. Hubbard, Suite 401 Chicago IL, 60610 Project Number: 011332 Project Manager: Getald Kracmer

Reported: 11/28/01 14:55

Semivolatile Organic Compounds by EPA Method 8270C

Great Lakes Analytical

Amstyte	Result	Reporting Limit	Units	Dilutica	Batch	Prepared	Analyzed	Method	Note
MW-2 (B111255-02) Water	Sampled: 11/16/01 09:00	Received:	11/16/01 (1:29					0.
Hexachlorobutadiene	ND	2.00	ugʻi	1	1110381	11/21/01	11/27/01	EPA 8270C	
Hexachlorocyclopunadiene	, ND	2.00	-	•	•	•	•	**	
Hexachloroethane	ND	2.00		•		•	-		
Indeno (1,2,3-cd) pyrene	ND	2.00		•	•	₩	•		
Isophorone	ND	2.00	•	•	•	•	-	٠,	
2-Methylnaphthalene	ND	2.00	-	•	•	•		•	
o-Cresol	סא	2.00	-	•	•		•		
na,p-Cresols	ND	2.00	•	•	•	•	•	at the second	
Naphthaleac	ND	2.00	•	•	•	•		-	
2-Nitroaniline	מא	10.0	•	•	-	-	•	**	
3-Nitroaniline	ND	10.0	•	•	-	•	•	•	
4-Nitroaniline	ND	10.0	•	•	-	•	•	•	
Nitrobenzene	ND	2.00	•	•	-	•	•	•	
2-Nitrophenol	ND	2.00	•	•	•	-	•	•	
4-Nitrophenol	ND	(0.0	•	•	•	•	•	•	
N-Nitrosodi-n-propylamine	ND	2.00	-	-	•	•	•	•	
N-Nitrosodiphenylamine	סא	2.00	-	•	•		•	*	
Pentachlorophenol	ND	10.0	•	•	•	•	•	•	
Phonamhreno	ND	2.00	-	•		•	•	•	
Phenol	ND	2.00	-	•	•		•	•	
Ругеле	ND	2.00	-	-	•	•	-	•	
1,2,4-Trichlorobenzene	ND	2.00		-	-		•	•	
2,4,5-Trichlorophenol	ND	10.0	•	-	•	•	•	•	
2,4,6-Trichlorophenol	ND	2.00	-		-	·		•	
Surrogase: 2-Fhiorophenol		12.2 %	10-7	0.3		•	-	,	
Surrogate: Phenol-d6		8.77 %	10.8	41.4	•	•	•	•	04
Surrogate: Nitrobenzene-d5		18.9 %	38.8-	28.5	•	•	•	•	O.
Surrogate: 2 Fluorobiphenyl		17.8%	38-8	19.3	•	•	•	-	O.
Surrogate 2.4,6-Tribromopher	no!	17.6 %	10-	122	•	•	-	•	
Surrogate: p-Terphenyl-d14		25.5 %	14.5	.131	•	•	•	•	

Great lokes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its antirety,

Andy Johnson, Project Manager

Page 11 of 29

351 W. Hubbard, Suite 401

1380 Busch Parkway Buffalo Grove, Illinois 60089 Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

Project: Former Ames Supply Project Number: 011332

Chicago IL, 60610 Project Manager: Gerald Kraemer

Reported; 11/28/01 14:55

Semivolatile Organic Compounds by EPA Method 8270C

Great Lakes Analytical

Analyte	Result	Reporting Limit	Uzits	Dilution	Batch	Propered	Analyzed	Method	Notes
MW-200 (B111255-04) Water	Sampled: 11/16/01 09:30	Received	: 11/16/0	1 08:29					O3
Hexachlorobutadiene	ND	2.00	og l	1	1110381	11/21/01	11/27/01	EPA 8270C	
Hexachlorocyclopentadiene	ND	2.00	-	•	•	7	•	•	
Hexachloroethane	ND	2.00	••	•	-	-	•	•	
Indeno (1,2,3-cd) pyrene	ND	2.00	**	•	•		•	•	
Isophorone	ND	2.00	••	-		•	•	•	
2-Methylnaphthalenc	ND	2.00	-	•	•	•		•	
o-Cresol	ND	2.00		•	•	w	**	•	
n,p-Cresols	ND	2.00	11	•	•	м	4	• .	
Naphtkalene	ND	2.00	••	•	•	-	-	•	
2-Nitromiline	ND	10.0		•	•	•	•	•	
3 - Nitroaniline	ND	10.0	-	•	•	-	-	•	
4-Nitroeniline	ND	10.0	-	•	•	•	•	•	
Nitrobenzene	ND	2.00		-	•	11	•	•	
2-Nitrophenol	ND	2.00		-	•	•	•	•	
4-Nitrophenol	ND	10.0	-	-	•	•	••	•	
N-Nitrosodi-n-propylamine	ND	2.00	-	-	•	-	•	•	
N-Nitrosodiphenylamine	ND	2 00	-	-	•	•	•	•	
Pentachlorophenol	ND	10.0	-	-	•	•	-	•	
Phesenthrene	ND	2.00	-	•	•	•	•	•	
Phenol	ND	2.00	-		•	•	•	•	
Рутепе	ND	2.00	-		•	•	-	. •	
1,2,4-Trichlorobenzene	ND	2.00	-	•		•	•	•	
2,4,5-Trichkrophenol	ND	10.0	•	•	•	•	•	•	
2,4,6-Trichlorophenol	ND	2.00		•	•	•	•	•	
Surrogute: 2-Fhiorophenol		13.9 %	10-	70.3	•	-	•	P	
Surrogate: Phenol-db		11.9 %	10.8	41.4	•	-	-	•	
Surrogate: Mirobenzene-d5		23.0 %	38.8	-98.5	•	•	•	•	04
Surregute: 2-Fluorobiphenyl		18.7 %	38-	59.3	-			-	04
Surragase: 2,4,5-Tribramopheno	,	19.7%	10-	122	•	•	•	-	
Surrogaia: p-Terphenyl-d14		26.4 %	14.5	-13/	•	•	~	-	

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Andy Johnson, Project Mainger

Page 15 of 29

Email: info@glalabs.com (847) 808-7786 FAX (847) 808-7772

EGSL

Chicago IL, 60610

351 W. Hubbard, Suite 401

Project: Former Ames Supply

Project Number: 011332

Project Manager: Gerald Kraumer

Reported: 11/28/01 14:55

Semivolatile Organic Compounds by EPA Method 8270C

Great Lakes Analytical

		Reporting	•••			_			
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Apalyzed	Method	Notes
MW-3 (B111255-03) Water	Sampled: 11/16/91 10:00	Received:	11/16/01	08:29					0.
Acensphthene	ND	2.00	ug/l	1	1110381	(1/21/0)	11.27/01	EPA \$270C	
Accomphibyless	ND	2,00	•	•	•	•	•	•	
Aniline	ND	2.00	•	•	•	-	•	#	
Anthracene	ND	2.00	•	•	•	-	•	•	
Benzoie acid	ND	10.0	-	-	•	-	ч	•	
Benz (a) ambracene	ND	2.00	•	•	•	4	•	•	
Bcnzo (a) pyrene	ND	2.00	-	#	•	•	•	•	
Benzo (b) fluoranthese	ND	2.00	•		-	•	•	•	
Benzo (ghi) perylene	ND	2.00	•	-	•	•	•	•	
Benzo (k) fluoranthene	ND	2.00	-	•	•	W		•	
Benzyl alcohol	ND	2.00	•	-	4	-	•	-	
Bis(2-chloroethoxy)methene	ND	2.00	•	•	•		4	•	
Bis(2-chloroethyl)ether	ND	2.00	-	•	-	-	*	•	
Bis(2-chloroisopropyi)ether	ND	2.00	•	•	-		•	•	
Bis(2-ethylhexyl)phthalare	ND	10.0	•		-		-	•	
4-Bromophenyl phenyl other	ND	2.00	-	-	-	•	u	-	
Butyl benzyl phthalate	ND	2.00	-	-	•	•	•	•	
4-Chloroaniline	ND	2.00	•	•	•	•	-	•	
4-Chloro-3-methylphenol	ND	2.00	-	-	•		•	•	
2-Chloronaphthalene	ND	2.00		-	•	-	•	•	
2-Chiorophenol	ND	2.00	-	•	•	•	-	•	
4-Chiorophenyl phonyl ether	ND	2.00	-	-	•		-	•	
Chryscoe	ND	2.00	-	•	•	•	•	•	
Dibeat (a.h) sethracene	ND	2.00	-	•	•			•	
Dibeazofuna	ND	2.00	•	•	•			•	
1 2-Dichlorobenzene	ND	2.00	-	•	•			•	
1.3-Dichlorobenzane	ND	2.00	•	•	-	-	-	•	
1.4-Dichlorobenzene	ND	2.00	•	•			-		
3,3'-Dichlorobenzidine	ND	10.0	-		•		•	•	
2,4-Dichlorophenol	סמ	2.00		•	-				
Diethyl phthalste	ND	2.00	•	•		-	•		
2,4-Dimethylphenol	D	2.00	•	•		-	•		
Dimethyl phthalate	ND	2.00	•	-		-	•	•	
Di-n-buryl phthalate	ND	10.0		•	•	•	•		
4,6-Dinitro-2-methylphenol	ND	10.0	•		•	•		•	
2,4-Dinatropheno!	ND	10.0	-	•	•		,,	•	
2,4-Dinitropolatione	ND ND	2 00	-		•			-	
•	ND ND	2.00			•			-	
2,6-Diagrotoluene	•				•	-		-	
Di-n-octyl phthulate	ND.	2.00	•	-		-		-	
Fluoranthese	ND	2.00	•	•	:	-	•	-	
Fluorene	ND	2.00	-	-	-	•		•	
Hexachiorobenzene	ND	2.00	•	•	•	-	•	-	

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Andy Johnson, Project Manager

Page 12 of 29

Email: info@glalebs.com (847) 808-7766 FAX (847) 808-7772

EGSL

351 W. Hubberd, Suite 401

Chicago IL, 60610

Project: Former Ames Supply

Project Number: 011332

Project Manager: Gerald Kraemer

Reported: 11/28/01 14:55

Semivolatile Organic Compounds by EPA Method 8270C

Great Lakes Analytical

		Reporting			_				
Analyte	Result	Limit	Units	Dilation	Batch	Prepared	Asalyzed	Method	Notes
MW-3 (B111255-03) Water	Sampled: 11/16/01 10:00	Received:	11/16/01	08:29					03
Hexachlorobutadiene	ND	2.00	ug/l	1	1110381	11/21/01	11/27/01	EPA 8270C	
Hexachlorocyclopentadiene	MD	2.00	-		•	•	-	•	
Hexachloroethme	ND	2.00	•	•	•	•		*	•
Indeno (1,2,3-cd) pyrano	ND	2.00	4	•		-	•		
Isophorone	,YD	2.00	•	•	. •	#	•	•	
2-Methylnaphthalene	ND.	2.00	•	•	•	-	-	•	
o-Cresol	ND.	2.00	•	•	-	-	-	•	
m.p-Cresols	ND	2.00	4	•	-	-	•	•	
Naphthalene	ND	2.00	-	-		•	-	•	
2-Nitroaniline	ND	10.0	•		-	-	•	•	
3-Netroaniline	ND	10.0	•	•	•	•	-	•	
4-Nitroaniline	ND	10.0	**	•	#	-	-	•	
Nitrobenzene	ND	2.00	•	•	-	-	-	•	
2-Nitrophenol	ND	2.00	•	•	•	-	-	•	
4-Nitrophenol	ND	10.0		•	•	•	•	•	
N-Nitrosodi-n-propylamine	ND	2.00	•	•	•	•	•	•	
N-Nitrosodipherylamine	ND	2,00	•	•	-	•	•	•	
Pentachlorophenol	ND	10.0	-	•	-	-	-	-	
Phenanthrene	ND	2.00	•	-	•	=		•	
Phenol	ND	2.00	-	-	•	×	•	•	
Ругеле	ND	2.00	•	•	•	•	•		
1,2,4-Trichlorobenzeze	ND	2.00	•	•	•		•	-	
2,4,5-Trichlorophenol	ND	10.0	•	•	•		-		
2,4,6-Trichlorophenol	ND	2.00	.	*		-		<u> </u>	
Surrogaie: 2-Fluorophanol		13.7 %	10-	70.3		-	•		
Surrogate: Phenol-d6		9.62 %	10.8	41.4	•	•	•	•	04
Surrogate: Nitrobenzena-dS		20.2 %	38.8	-98.5	•	•	•	•	04
Surrogate: 2-Fluorobyhenyl		18.7 %	38-	89 3	•	•	•	•	04
Surrogate: 2,46-Tribromopher	nol	18.2 %	10-	122	-	•	•	•	
Surroyate: p-Terphenyl-d14		23.0 %	14.5	5-131	-	•	•	•	

Great Akes Analytical

The results in this report apply to the samples analytical report must be reproduced in its entirety.

Andy Johnson, Project Manager

Page 13 of 29

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401 Chicago II., 60610 Project: Former Ames Supply

Project Number: 011332

Project Manager: Gerald Kraemer

Reported: 11/28/01 14:55

Semivolatile Organic Compounds by EPA Method 8270C

Great Lakes Analytical

Analyte	Resuk	Reporting Limit	Unsts	Dilution	Batch	Prepared	Assiyzed	Method	Notes
MW-6 (B111255-05) Water	Sampled: 11/16/01 10:30	Received:	11/16/01	08:29					O3
Acenaphthene	ND	2.00	ับg/ไ	1	1110381	11/21/01	11/28/01	EPA \$270C	
Accesphiliplene	ND	2.00	*	*	•		•	•	
Aniline	ND	2.00	"	7	•	-	-	•	
Anthracene	ND	2.00	-	-	-		•	•	
Benzoic acid	ND	10.0	*	•	•	•	-	•	
Benz (a) anthracene	ND	2.00	-	•	•	w	•	•	
Benzo (a) pyrene	ND	2.00	Ħ	•	•	-	•	•	
Benzo (b) fluoranthene	ND	2.00	-	•	•	•	•	•	
Benzo (ghi) perylene	ND	2.00		•	-		•	•	
Benzo (k) fluoranthene	ND	2.00	•	•	•	•	•	•	
Benzyl alcohol	ND	2.00	•	-	•	•	•	•	
Bis(2-chloroethoxy)usethane	ND	2.00	••	•	•			•	
Bis(2-chloroethyl)ether	ND	2.00	-	•	•	4	•	•	
Bis(2-chlorossopropyl)ether	ND	2.00	•	•	•	•	-	• '	
Bis(2-ethylhexyl)phthalate	ND	10.0	-	•	•	и	-	-	•
4-Bromophenyl phonyl ether	ND	2.00	-	•	•	•	-	•	
Butyl benzyl phthalate	ND	2.00	•	•	•	•	•	•	
4-Chloroaniline	ND	2.00	-	•	•	-	•	•	
4-Chloro-3-methylphenol	ND	2.00	•	•	•	•		•	
2-Chloronaphthalene	ND	2.00	-	•	•	•	-	•	
2-Chiorophenol	ND	2.00	•		•	•	•		
4-Chlorophenyl phenyl ether	ND	2.00	-	•	•	-	-	•	
Chrysene	ND	2.00	-	•	•	•		•	
Dibenz (a,h) anthracens	ND	2 00	-	•	•			•	
Dibenzofuran	ND	2.00		•	•	-	•	-	
1.2-Dichlorobenzene	ND	2.00	-	•	•	-	•	•	
1 3-Dichlorobenzene	ND	2.00		•	-		•	•	
i ,4-Dichlorobenzone	ND	2.00			•	-	•	w	
3,3'-Dichlorobenzidine	ND	10.0		•	•	-	•	•	
2,4-Dichlorophenol	ND	2.00		•	•	**		•	
Diethyl phthalate	ND	2 00	,	•			•		
2,4-Dimethylphenol	ND	2.00					•	-	
Dimethyl phthalate	ND	2.00	•		•			•	
Di-n-butyl phthalate	ND ND	10.0	•	٠ •	-	-		•	
4.6-Dinitro-2-methylphenol	ND	10.0	-				-		
2,4-Diaitrophenol	ND	10.0					,	•	
2,4-Dinitrotoluene	ND	2.00	_		•		•	-	
2,6-Dinitrotoluene	ND AD	2.00	-		•		-		
•	ND ND	2.00		•	•		•	-	
Di-n-octyl phthelete Fluoranthene	ישר. סעי	2.00						_	
	· · =		· •	-	•		-	-	
Fluorene	ND	2.00		-	-	_	•	-	
Hexachiorobenzene	ND	2.00	-	•	-	-	•	•	

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Andy Johnson, Project Manager

Page 16 of 29

Email: info@gialabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401

Chicago IL, 60610

Project: Former Ames Supply

Project Number: 011332

Project Manager: Gerald Kracmer

Reported: 11/28/01 14:55

Semivolatile Organic Compounds by EPA Method 8270C

Great Lakes Analytical

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-6 (B111255-05) Water	Sampled: 11/16/01 10:30	Received:	11/16/01	08:29					03
Hexachlorobutadiene	DND	2.00	ug/l		1110381	11/21/01	11/28/01	EPA 8270C	
Hexachlorocyclopentadiene	ND .	2.00	-	•	•	•		•	
Hexachloroethane	ND	2.00	-	•	•	•	•	-	
indeno (1,2,3-cd) pyrene	ND	2.00	•	•	•	**	•	•	
Isophorone	ND	2.00	•	•	•	••	•	•	
2-Methylnaphthalene	ND	2.00	•	•	•	n	ø	•	
o-Cresol	ND	2.00	•	•	•	•	•	•	
mp-Cresols	ND	2.00	•	•	•	•	-	•	
Naphthalene	ND	2.00	-	•	•	•	-	•	
2-Nitroaniline	סא	10.0	-	•	•	•	*	•	
3-Nitroaniline	ND	10.0	•	•	•	•		•	
L-Nitroaniline	ND	10.0	•	-	•	•		•	
Nitrobenzene	ND	2.00	-	•	•	•		•	
2-Nitrophenol	ND	2.00	-	•	•	-		•	
L-Nitrophenol	ND	10.0	•	•	4	•	•	•	
N-Nitrosodi-a-propylamine	ND	2.00	•	•	•		•	•	
N-Nitrosodiphenylamme	ND	2.00	-	•	•	•	•	•	
Pentachlorophenol	ND	10.0	•	•	•	-	-	•	
Phenanthrene	ND	2.00	•	•	•	•	•	•	
Phenol	ND	2.00	•	•	•	•	•	•	
Pyrene	מא	2.00	•	•	•	-	**	•	
1,2,4-Trichlorobenzene	ДŊ	2.00	•	•	•	•	•	•	
2,4,5-Trichlorophenol	ND	10.0		•	•	•	-	-	
2,4,6-Trichlorophenol	ND	2 00	<u> </u>	-		•		•	
Surrogate: 2.Fluorophenol		13.8 %	10-	70.3	-			•	
Surrogate: Phenol-d6		9.90 %	10.8	41.4	-	-	•	•	06
Surragate: Nitrobenzene-d5		23.8 %	38.8	-98.5	-	•	•	•	04
Surrogate: 2-Fluorobiphenyi		18.4 %	38-	89.3	•	•	•	•	04
Surrogale: 2,4,6-Tribromophe	nol	17.2 %	10-	122	•	•	•	•	
Surrogate p-Terphenyl-d14		21.9 %	14.5	-131	•	•	•	•	

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Andy Johnson, Project Manager

Page 17 of 29

Email info@glatabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

Project: Former Ames Supply

351 W. Hubbard, Suite 401 Chicago IL, 60610 Project Number: 011332 Project Manager: Gerald Kraemer Reported: 11/28/01 14:55

Volatile Organic Compounds by EPA Method 8260B - Quality Control Great Lakes Analytical

Analyte	Rasult	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1110388 - EPA 5030B (P/T)										
Blank (1110388-BLK1)				Prepared a	& Analyze	± 11/21/0	11			
Acetone	ND	10.0	ug/I							
Benzene	ND	2.00								
Bromodichloromethene	VD	2.00								
Bromoform	ND	2.00	•							
Bromounthane	ND	2.00	**							
2-Sutanone	KTD	10.0	**							
Carbon dissulfide	ND	2.00	•							
Carbon tetrachloride	ND	2.00	•							
Chlorobouzene	ND	2.00	-							
Chlorodibromomethane	ND	2.00	•							
Chlorochane	ND	2.00	-							
Chloroform	ND	2.00	•							
Chloromethane	ND	2.00	-							
1.1 Dichloroethane	ND	2.00	•							
1,2-Dichloroethane	ND	2.00								
1,1-Dichloroethese	ND	2.00								
crs-1,2-Dichlomethene	ND	2.00	-							
trans-1,2-Dichloroethene	ND	2.00	-							
1.2-Dichioropropane	ND	2.00	•							
cis-1,3-Dichloropropene	NID	2 00	-							
trans-1,3-Dichloropropene	ND	2.00	-							
Ethylbonzene	ND	2.00	•							
2-Hexanone	ND.	10.0	•							
Methylene chloride	% D	2.00								
4-Methyl-2-pentanose	ND	10.9	-							
Styrone	ND	2 00	-							
1,1,2,2-Tetrachloroethane	ND	2.00	-							
Tetrachloroethene	ND	2 00	-							
Toluene	ND	2 00	•							
1,1,1-Trichloroethase	ND	2.00	•							
1,1,2-Inchlorocthase	ND	2.00	•							
Trichloroethene	ND	2.00	•							
Trickloroflypromethane	ND	2 00	-							
Vinyl acetate	ND	2.00	-							
Vinyl chloride	ND	2.00	•							
Total Xylones	ND	2.00	•							
Surrogate: Dibromofluoromethene	52.7			50.0		105	91.1-111			
Surrogate: 1,2-Dichloroethane-d4	52.0		•	50 Ú		104	85.1-104			

Great Lakes Analytical

The results in this report apply to the samples analysed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Antly Johnson, Project Manager

Page 18 of 29

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401 Chicago IL, 60610 Project Former Ames Supply

Project Number: 011332 Project Manager: Gerald Kraemer Reported: 11/28/01 14:55

Volatile Organic Compounds by EPA Method 8260B - Quality Control Great Lakes Analytical

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Nones
Batch 1110388 - EPA 5030B (P/T)					~-~~					
Hank (1110388-BLK1)				Prepared	& Analyza	ed: 11/21/	10			
Surrogate: Toluene-de	49.5	· 	ug-T	50.0	-	99.0	95.1-105			
Surrogate: 4-Bromofluorobenzena	45.8		•	50. O		91.6	89.6-105			
LCS (1110388-BSI)			•	Prepared	& Analyza	ed: 11/21/	10			
Acetone	59.6	10.0	n g -J	50.0		119	10-194			
Benzene	46.2	2.00	-	50.0		92.4	84.9-115			
Brossodichloromethane	53.3	2.00	-	50.0		107	74.3-130			
Втотобога	55 9	2 00	•	\$0.0		112	70.1-120			
Brornomethans	50.0	2.00	•	\$0.0		100	10-25B			
Z-Butanone	54.2	100	•	50.0		108	10-147			
Carbon disulfide	44.7	2.00	•	50 0		89.4	43.4-146			
Carbon tetrachlonde	43.9	2.00	•	\$0.0		87 8	60.5-138			
Chlorobenzene	48.3	2.00	•	50.0		96.6	85.4-115			
Chlorodibromomethane	53.2	2.00	•	50.0		106	78.8-116			
Chloroethane	19.8	2.00	•	50.0		39 6	10-455			
Chloroform	50.3	2.00	•	\$0.0		101	74.5-134			
Chloromethane	46.3	2.00	•	50.0		92.6	78.7-128			
1,1-Dichloroethme	34.6	2.00	•	\$0.0		69.2	76.8-120			
1,2-Dichloroethane	54.4	2.00	•	\$0.0		109	66.7-129			
1.1-Dichlorocthene	41.5	2 00	•	50.0		83.0	72.7-125			
cis-1,2-Dichloroethese	49.2	2.00	•	50.0		98 4	87-123			
trans-1.2-Dichloroetheas	45.3	2.00	•	50.0		90.6	77.9-119			
1,2-Dickloropropage	50.9	2 00	•	50.0		102	88.3-115			
cas-1,3-Diohioropropese	55.7	2.00	•	50.0		111	61.2-120			
trans-1_3-Dichloroprapeae	67.0	2.00	•	50.0		134	75.2-126			
Ethylbenzene	46.3	2.00	•	50.0		92.6	843-119			
2-Hexanone	54.9	10.0	•	50.0		l 10	21.4-142			
Methylene chlonde	61.8	2 00	-	50 0		124	62.5-140			
4-Methyl-2-printingere	55.0	10 D	•	500		110	38.2-141			
Styrese	50.E	2.00	•	50.0		102	86.6-117			
1,1,2,2-Tetrachlotoethase	55.7	2.00	•	50.0		111	13.2-197			
Tetrachioroethese	41.7	2.00	•	50 0		83.4	76.6-120			
Toluenc	47 L	2 00	•	50 0		94 2	86.3-120			
1,1,1-Trichlorocthane	44.1	2.00	•	50.0		89.6	63.5-146			
1,1,2-Trichlorochane	55.8	2.00	•	50.0		112	84.5-124			
Trichloroethene	419	2.00	•	50.0		83.8	51.4-153			
Trichlorofluorometicase	37.3	2.00	•	50 0		74.6	10-586			
Vinyl acetate	32.8	2.00	-	50.0		65.6	10-219			

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of castody document. This analytical report must be reproduced in its entirety,

Andy Johnson, Project Manager

Page 19 of 29

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401

Chicago IL, 60610

Project: Former Ames Supply

Project Number: 011332

Project Manager: Gerald Kraemer

Reported: 11/28/01 14:55

Volatile Organic Compounds by EPA Method 8260B - Quality Control Great Lakes Analytical

Applyte	Result	Reporting Limit	Umis	Spike Level	Source Result	XREC	%REC Limits	RPD	RPD Limit	Notes
Batch 1110388 - EPA 5030B (P/T)					-					
LCS (1110386-BS1)				Properce	& Analyze	d: 11/21/	01			
Vinyl chloride	42.6	2.00	ug/I	50.0		85.2	71-120			
Total Xylenes	141	2.00	-	150		94.0	88.3-118			
Surrogate Dibromofivoromeshane	52.2		-	50.0		104	91.1-111			
Surrogate: 1,2-Dichlaroethane-d4	51,2		~	50.0		102	85.1-104			
Surrogate: Toluene-dB	50.0		~	50.0		100	95.1-105			
Surrogate: 4-Bromofivorobenzene	50.8	•	-	50.0		102	89.6-105			
Matrix Spike (1110388-MS1)	Sat	ree: B11125	<u>5-0</u> 1	Prepared:	11/21/01	Analyzed	£ 11/22/01			
Acetone	72.0	10.0	ug I	50 0	ND	144	10-269			
Bonzone	46.7	200	-	50.0	ND	93.4	71.4-115			
Bromodichloremethene	54.2	2.00	•	50.0	ND	108	65.3-134			
Bromeform	56.5	2.00	•	\$0.0	ND	113	54.6-132			
Bromomethane	65.1	2.00	•	50.0	ND	130	10-176			
2-Butanone	53.5	10.0	•	50.0	ND.	107	10-201			
Carbon distuffice	47.5	2.00	•	50.0	ND	95.0	23.4-143			
Carbon (etrachlonde	43.1	2.00	•	\$0.0	ND	86.2	26.3-133			
Chlorobeczese	46.9	2.00	•	50.0	ND	93.8	77.4-108			
hlerodibromomethme	\$1. 8	2.00	•	50.0	ND	104	72.8-117			
Chloroethane	43.6	2.00	•	50.0	ďΡ	87.2	10-293			
Chloroform	51.8	2.00	•	50.0	УD	104	70.8-124			
Chloromethane	44.6	2 00	•	50.D	ND	89.2	61.3-109			
1,1-Dichloroethiae	32.1	2.00	•	50.D	ND	76.2	63.3-114			
,2-Dichloroethase	55.4	2.00	•	50.0	ND:	111	54.5-137			
.1-Dichloroetheac	41.5	2.00	•	50.0	ND	\$3.0	36.1-115			
:15-1,2-Dinbloreethens	49.6	2.00	•	50.0	ND	99.2	64.8-129			
rans-1,2-Dichlemethene	47.1	2.00	-	50.0	ND	94.2	54.7-113			
,2-Dichloropropune	51.3	2.00	•	50.0	ND	103	77.8-114			
:ls-1_J-Dichloropropene	51.9	2.00	•	50.0	ND	104	67 3-117			
rans-1.3-Dichloropropene	64.7	2.00	•	50 .0	ND	129	57.3-124			
Edity Ibenzenc	45.0	2.00	•	50.0	ND	90.0	58.3-111			
!-Hexanone	59.7	10 0	•	50.0	ND	119	10-225			
Mcthylene chloride	59.7	2.00	-	50.0	ND	119	45.6-150			
-Michyl-2-pertainme	57.9	10.0	•	5 0 0	ИD	116	10-208			
Styrene	49.9	2.00	•	50.0	ND	99.8	49.7-126			
.1,2,2-Tetrachlorosfisse	57.4	2.00	•	50.0	ND	115	20.6-223			
l'etrachioroethese	38.8	2.00	•	50.0	ND	77.6	45.1-113			
l'oluene	48 1	2.00		50.0	ND	96.2	71.3-118			
,1,1-Tnchloroethane	45.4	2.00	-	50.0	ND	90.8	42.5-128			

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Andy Johnson, Project Manager

Page 20 of 29

Email: info@glalabs.com (847) 808-7786 FAX (847) 808-7772

EGSL

Project: Former Ames Supply

351 W. Hubbard, Suite 401 Chicago IL, 60610 Project Number: 011332
Project Manager: Gerald Kraemer

Reported: 11/28/01 14:55

Volatile Organic Compounds by EPA Method 8260B - Quality Control Great Lakes Analytical

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1110388 - EPA 5030B (P/T)										
Matrix Spike (1110388-MS1)	So	arce: B11125	5-01	Prepared:	11/21/01	Analyzec	± 11/22/01			
,1,2-Trichloroethane	57.7	2.00	цд .Л	50.0	Ŋ	115	70.1-139			
Frichloroethene	41.0	2 00	-	50.0	ND	82.0	53.5-106			
Crichloroffuoromethane	42.9	2.00	•	50.0	ND	85.8	10-417			
Vinyl acetate	49.8	2.00	•	50.0	ND	99.6	10-239			
/inyl chlonde	41.6	2.00	•	50.0	ND.	\$3.2	37.4-113			
Fotal Xylenes	139	2.00	•	150	ND	92.7	70.8-116			
Surrogate: Dibromofhoromethane	54.3		-	50.0		109	91.1-111			
Surrogate: 1,2-Dichloroethane-d4	53.8		*	50.0		108	85.1-104			
Surrogate: Toluene-d8	5 2.0		-	50.0		104	95.1-105			
Surrogate. 4-Bromofluorobenzene	52.2		•	50.0		104	89.6-105			
Matrix Spike Dup (1110388-MSD1)	Sa	oree: B11125	C. 01	Downwart	<i>! ! /?</i> ! <i>!</i> 01	Anabose	Ŀ 11 <i>/</i> 22/01			
Acetonic	75.5	10.0	ug/l	50.0	ND	153	10-269	6.06	73.8	
enzene	45.5	2.00	•	50.0	ND	91.0	71.4-115	2.60	19.1	
kromodichloromethese	53.8	2.00	•	50.0	ND	108	65.3-134	0.741	15.6	
kromoform	57.0	2.00	•	50.0	NID	114	54.6-132	0.881	36.2	
Fromome(home	66.2	2.00	•	50.0	ND	132	10-176	1.68	45.7	
-Butanone	54.9	10 0	•	50.G	ND	110	10-201	2.58	61.6	
Carbon diswifide	46.1	2.00	•	50.0	VID.	92.2	23.4-143	2.99	23.6	
Carbon setrachlonde	40.0	2.00	•	50.0	ND	80.0	26.3-133	7.46	26.2	
Chlorobenzene	46.9	2.00	-	50.0	ND	93.8	77.4-108	0.00	12.2	
Interesting	53.0	2.00	-	50.0	ND	106	72.8-1.17	2.29	23.9	
Chloroethano	43.7	2.00	•	50.0	ND	87.4	10-293	0.229	36.9	
Chloroform	51.6	2.00	•	50.0	ND	103	70.8-124	0.387	10.6	
Chloromethane	50.8	2.00	•	50.0	ND	102	61.3-109	13.0	20.1	
,i-Dichloroethane	45.4	2.00	-	50.0	ND	90.8	63.3-114	17.5	12.7	
2-Dichloroethane	55.0	2.00	•	50.0	ND	110	54.5-137	0.725	27.2	
.l-Dichloroethene	42 0	2.00	•	50.0	ND	\$4.0	36.1-l 15	1.20	23	
is-1,2-Dichloroethese	50.0	2.00	•	50.0	ND	100	64.8-129	0.803	19.6	
ans-1,2-Dichloroethene	46.3	2.00	•	50.0	ND	92.6	54.7-113	1.71	17.4	
,2-Dichloropropune	50.2	2 00	-	50.0	ND	102	77 8-114	0.979	16.4	
is-1,3-Dichloropropuse	\$1.7	2.00	-	50.0	ND	103	67 3-117	0.386	15.7	
ans-1.3-Dichloropropene	64 0	2.00	-	50.D	ND	128	57.3-124	1.09	26.3	
thylbenzene	43,5	2.00	•	10 0	ND	87.6	68.3-111	2.70	13.5	
-Hexanone	60.2	10.0	•	50.0	ND	120	10-225	0.834	58.3	
fethylana chlande	613	2.00	•	30.0	ND	123	45.6-150	2.64	11.4	
-Methyl-2-pentanoce	58.2	10.0		10.0	ND	116	10-208	0.517	69.7	
tyrene	49.6	2.00		50.0	ND	99 2	49 7-126	0.603	18.6	

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Andy Johnson, Project Manager

Email: info@glatabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401 Chicago IL, 60610

Project: Former Ames Supply

Project Number: 011332 Project Manager: Gerald Kraemer

Reported: 11/28/01 14:55

Volatile Organic Compounds by EPA Method 8260B - Quality Control Great Lakes Analytical

•		Reporting		Spike	Source		%REC		RPD	
Analyte	Resuk	Limit	Units	[Leve]	Result	%REC	Limie	RPD	Limit	Notes
Batch 1110388 - EPA 5030B (P/T)										
Matrix Spike Dup (1110388-MSD1)	Sour	rce: B11125	5-0I	Prepared:	11/23/01	Analyzo	£ 11/22/01			_
1,1,2,2-Terrachiorochane	57.5	2.00	ug/l	50.0	ND	115	20.6-223	0.174	50.3	
Tetrachlomethese	37.1	2.00	•	50.0	ND	74.2	45.1-113	4.48	17.6	
Tolucne	46.2	2.00	•	50.0	ND	92.4	71.3-118	4.03	19.4	•
1.1,1-Trichloroethane	43.1	2.00	•	C.02	ND	86.2	42,5-128	5.20	18.4	
1,1,2-Trichloroethane	57.1	2.00	•	50.0	ND	114	70.1-139	1.05	32.5	
Trichloroethene	38.8	2.00	-	50.0	ND	77.6	53.5-106	5.51	20.9	
Trichlorofmoremethane	43.3	2.00	•	50.0	ND	86 .6	10-417	0.928	29.2	
Vinyl acetate	57.7	2.00	-	50.0	ND	115	10-239	14.7	34.5	
Vinyl chloride	41.8	2.00	•	50.0	ND	83.6	37.4-113	0.480	23.5	
Total Xylenes	135	2.00	-	150	NID	90.0	70.8-111	2.92	12 4	
Surrogate: Dibromoftwornmelkane	54.8			50.0		110	91.1-111			
Surrogate: 1,2-Dichloroethaue-d4	53.0		~	50.0		106	85.1-104			
Surrogate: Toluene-d8	31.2		•	50_0		102	95.1-105		•	
Surrogate: 4-Bromoflucrobeazene	52.2		-	SOLO		104	89.6-105			•

GreatLakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Andy Johnson, Project Manager

Page 22 of 29

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401 Chicago IL, 60610

Project: Former Ames Supply

Project Number: 011332

Reported: 11/28/01 14:55 Project Menager: Gerald Kraemer

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

Great Lakes Analytical

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1110381 - EPA 3510C										
Blank (1110381-BLK1)				Prepared:	11/21/01	Analyzed	: 11/28/01			
Acenaphthene	ND	2.00	ug/l							
Acenaphthylone	ND	2.00	•							
Aniline	ND	2.00	•							
Antiracene	ND	2.00	-							
Benzoic acid	ND	10.0	17							
Benz (a) anthracene	ND	2.00	-							
Senzo (a) pyrone	ND	2.00	н							
Senzo (b) fluoranthene	ND	2.00	-							
Beazo (ghi) perylene	ND	2.00	•							
Beazo (k) fluoranthene	ND	2.00	•							
Beszyl sleahol	ND	2.00	•							
Big(2-chloroethoxy)methane	ND	2 00	•							
Bur(2-chiloroethyl)ether	ND	2.00	•							
Bis(2-chloroisopropyl)etter	ND	2.00	-							
3is(2-cshylhexyl)phthalste	ND	10.0	•							
-Brossophenyl phonyl other	ND	2 00	-							
Buryl benzyl phthalate	ND	2.00	-							
-Chimomnime	סמ	2.00	-							
-Chlore-3-methylphenol	ND	2.00	•							
-Chloronaphthaicne	ND	2.00	-							
:-Chicrophenol	ND	2.00	•							
-Chlorophenyl phenyl other	מא	2.00	•							
Chrysene	ND	2.00	•							
Otherse (s.h) southrecene	ND	2.00	•							
Dibenzofaran	ND	2.00	-							
2-Dichlorobenzene	ND	2.00	-							
.J-Dichlombeazene	ND	2.00	-							
4-Dichlorobouzone	ND	2.00	-							
3 -Dichlorobenzidine	МD	10.0	-							
2,4-Dichlorophenol	ND	2.00	•							
Depthyl phthalate	ND	2.00	•							
4-Dimethylphenol	ND	2.00	•							
Directly I phthalate	ND	2.00	•							
Di-m-buryl phthalate	ND	100	-							
1,6-Dustro-2-methylphonol	ND	10.0	-							
.4-Disstrophenol	מא	100	-							
4-Dustrotoluce	ИD	2 00	•							
R.6-Disirrotatuese	ND	2.00	•							
-ba -a mill and made	112									

Great Lakes Analytical

The results in this report apply to the samples analysed in accordance with the chain of custody document. This analytical report must be reproduced in its entirery.

Andy Johnson, Project Manager

Page 23 of 29

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401 Chicago IL, 60610 Project: Former Ames Supply

Project Number: 011332

Project Manager: Gerald Kraemer

Reparted: 11/28/01 14:55

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

Great Lakes Analytical

Analyte	Result	Reporting Lumit	Units	Spike Level	Source Resuk	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1110381 - EPA 3510C							-			
Blank (1110381-BLK1)				Propered:	11/21/01	Analyze	1: 11/28/01			
Di-n-octyl phthalate	ND	2,00	ug/l							
Fluoranthene	. ND	2.00	•							
Fluorene	· ND	2.00	н							
Hexachiorobenzene	ND	2.00	۳							
Hexachlorobutadiene	ИD	2.00	-							
Hexachlorocyclopentadiene	ND	2.00	-							
Hex achieroethane	ND	2.00	•							
Indeno (1,2,3-cd) pyrene	ND	2.00	~							
sophorone	מא	2.00	••							
2-Methylmaphthalone	ND	2.00	**							
o-Cresol	ND	2.00	••							
n.p-Cresols	ND	2.00	-							
Naphthalene	מא	2.60	•							
-Nitrosniline	ΝĎ	100	**							
-Nitroznihne	ďΛ	10.0								
t-Nitroanilme	ND.	10.0	••							
Vitrobenzene	ND	2.00	-							
2-Netrophenol	ND	2.00								
f-Nitrophenoi	ND	10.0	-							
N-Nitrosodi-n-propylamine	ND	2.00	•							
N-Nitrosadiphenylamne	ND	2.00	-							
Ponrachiorophenol	ND	10.0								
Phensothrone	ND	2.00	-							
Phenol	ND	2.00	-							
Pyrone	ND	2.00	-							
2,4-Trichlorobenzene	ND	2.00	•							
2,4,5-Trichlorophenol	ND	10.0	•							
2,4.6-Trichlorophenol	מא	2.00	-							
Surrogue. 2-Fhorophenol	10.0			99.8		20.0	10-70.3			· · · · · ·
Surrogate: Photol-de	19.0		-	99.8		19.0	10.8-41.4			
Surrogate: Nitrobertene-d5	31.7		-	50 0		63.∢	38.8-98.5			
Surrogate: 2-Fluorobiphenyi	31.8		-	50.0		63.6	38-89.3			
Surrogate: 2,4,6-Tribromophenol	28 1		•	99.8		28.2	10-/22			
Surrogate: p-Terphanyl-d 4	47.1		-	50.0		94.2	14.5-131			

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Andy Johnson, Project Manager

Page 24 of 29

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

Project: Former Ames Supply

351 W. Hubbard, Suite 401 Chicago IL, 60610 Project Number: 011332

Project Manager: Gerald Kraemer

Reported: 11/28/01 14:55

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Great Lakes Analytical

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1110381 - EPA 3510C				·						
LCS (1110381-BS1)				Prepared:	11/21/01	Analyze	L 11/28/01			
Accusphthene	36.8	2.00	ns/r	50.0		73.6	31-110			
Accomplishylene	35.3	2.00	•	50.0		70.6	31.5-110			
Aniline	17.3	2.00	•	50 0		34.6	5 -110			
Andracen	35 7	2.00	•	50.0		71 4	32.8-110			
Benzoic acid	16.3	10.0		50.0		32.2	5-110			
Benz (a) anthracene	37.2	2.00	-	50.0		74.4	29.4-110			
Bess20 (2) pyretse	39.3	2.00	-	50.0		78.6	22-117			
Beszo (h) fluorentisene	40 9	2.00	•	50.0		81.6	42.1-110			
Bonto (ghi) peryleac	45.4	2.00	•	50.0		90.8	5-147			
Ben≥o (k) fluomethene	42.9	2.00	-	50 .0		85.8	25.6-115			
Benzyl alcohol	32.9	2.00	-	50 0		65.8	11.8-110			
Bus(2-chioroethoxy)methane	33.6	2.00	-	50.0		67.2	12.3-110			
Bis(2-chloroethyl)ether	34.9	2.00	•	50.0		69.8	15-113			
Bis(2-chloroisepropyl)ether	3 7.3	2.00	•	50.0		74.6	10.6-110			
Bis(2-ethylbexyl)phthelate	49.8	0.01	•	50.0		99.6	5-147			
I-Bromophenyl phenyl ether	35.5	2.00	-	50.0		71 0	26.9-110			
Buryi benzy i phthaiste	52.1	2.00	-	50.0		104	5-151			
-Chlorospiline	101	200	•	50 0		20.2	5-110			
I-Chloro-I methylphenol	37.2	2.00	•	50.0		74.4	19.6-110			
2-Chloromephthulene	35.8	2 00	-	50.0		71.6	15.4-110			
2-Chilorophesol	35.3	2.00	-	50.0		70.6	5-110			
f-Chlorophenyl phenyl ether	40.1	2.00	-	50.0		80 2	19.8-110			
Chrysene	27.8	2.00	•	50 .0		55 6	25.9-110			
Dibonz (a,k) authracene	30.9	2.00	•	50 0		61.8	5-143			
Dibenzofara	36.9	2.00	-	0.02		73.8	23.2-110			
2-Dicklorobenzene	33.4	2.00	•	50.0		66.8	13.4-110			
,3-Dichlorobergene	32.7	2.00	•	50.0		65.4	7.4-110			
.4-Dichlorobezzene	33.2	2.00	•	50.0		66.4	9.67-110			
,3'-Dichlorobenzidine	18.1	10.0	•	50.0		36.2	5-110			
L4-Dichlorophenoi	34.0	2 00	•	50.0		68.0	5-110			
Diethyl phthalace	37.5	2.00	-	50.0		75.0	17.6-110			
.4-Directhylphenol	29.7	2.00	•	50 .0		59.4	5-110			
Dimethyl phthalate	38.3	2.00	•	50 0		76.6	16.1-117			
Di-n-butyl phthalate	38.2	10.0		50.0		76.4	19.7-110			
.6-Dimero-2-methylphenol	33.0	100	•	50.0		66.0	5-114			
.4-Dimetrophenol	32.0	10.0	•	50.0		64.0	5-126			
L4-Dinstrotofuene	38 3	2.00	•	50.0		76.6	20.6-110			
.6-Dinitrotalume	37.5	2.00	•	30 O		75.0	23.3-110			

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analyzical report must be reproduced in its entirety.

Andy Johnson, Project Manager

Page 25 of 29

Email: info@glalabs.com (847) 808-7705 FAX (847) 808-7772

EGSL

351 W. Flubbard, Suite 401 Chicago IL, 60610 Project: Former Ames Supply

Project Number: 011332

Project Manager: Gerald Kraemer

Reported: 11/28/01 14:55

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

Great Lakes Analytical

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1110381 - EPA 3510C										
LCS (1116381-BS1)				Prepared:	11/21/01	Analyzed	£ 11/28/01			
Di-n-octyl phthulate	39.0	2.00	ug/1	50.0		78.0	5-145			
Fhosanthene	33.0	2.00	•	\$0.0		66.0	28.6-110			
Fluorene	38.7	2.00	-	50.0		T7.A	30,5-1 10			
Hexach)orobenzene	34.7	2.00	-	50.0		69.4	22.6-110			
Haxacklorobutadiene	31.0	2.00	•	50 .0		62.0	5-110			
Hexachlorocyclopeutadiene	19.5	2.00	•	50.0		39.0	5-110			
Hexachlorocthane	32.8	2.00	•	50.0		65.6	5-110			
Indeao (1.2,3-cd) pyrene	42.7	2.00	•	50.0		85.4	5-150			
Isophorone	34.0	2.00	**	50 .0		68.0	13 1-110			
2-Methylnaphthalene	32.7	2.00	•	50.0		65.4	21.9-110			
o-Cresol	32.8	2.00	•	50.0		65.6	24.9-110			
ro _u p-Cresols	31.3	2,00	•	50.0		62.6	5-110			
Naphthalene	31.3	2.00	•	\$0.0		62.6	28.5-110			
2-Nitro znilise	38.4	10.0	•	50.0		76.B	11.3-118			
I-Nitroandre	23.8	10.01	•	50.0		47 6	7.75-110			
4-Nitrosmiline	32.6	10.0	•	50.0		65.2	18.5-170			
Nitrobenzene	34.6	2.00	•	50.0		69.2	13.6-110			
2-Nitrophecol	33.9	2.00	•	50.0		67.8	5-110			
4-Nitrophenol	23.9	10.0	•	50.0		47.8	5-110			
N-Nitrosodi-a-propylamine	38.2	2.00	٦	50.0		76.4	14.6-110			
N-Nitrosodiphenylamine	33.4	2.00	•	0.02		66.8	19.1-110			
Pentachlorophenol	29.2	10.0	•	50.0		58.4	5-110			
Phenanthrene	37.3	2.00	-	50.0		74.6	363-110			
Phenel	19.0	2.00	•	50.0		38.0	5-110			
Рутель	50.3	2.00	•	50.0		101	27.2-126			
1,2,4-Trichlorobeazone	31.0	2.00	-	50.0		62.0	11.1-110			
2,4,5-Trichlorophenol	39.2	10.0	•	50.0		78.4	5-110			
2.4,6-Trichlorophenol	39.8	2.00	•	50.0		79.6	5-114			
Surrogote: 1-Fluorophenol	45.8		-	99 8		45.9	10-70.3			
Surrogale: Phenol-d6	31.4		-	99.6		31.5	19.8-41.4			
Storogate: Nitrobenzeno-di	33.0		•	50.0		66.0	38.8-98.5			
Surrogate: 2-Fluorobiphenyl	34,9		•	50 0		69.8	38-89.3			
Surrogate: 1,4,6-Tribromephenol	56.9		•	99.8		67.0	10-122			
Surrogaze: p-Terphenyl-d14	47.6		•	50.0		95.2	14.5-13.1			

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Andy Johnson Project Manager

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

351 W. Hubberd, Suite 401

Chicago IL, 60610

Project. Former Ames Supply

Project Number: 011332

Project Manager: Gerald Kraemer

Reported: 11/28/01 14:55

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Great Lakes Analytical

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Nota
Batch 1110381 - EPA 3510C										
LCS Dup (1110381-BSD1)				Prepared:	11/21/01	Analyze	± 11/28/01			
Di-n-octyl phthalate	38.0	2.00	ug/I	50.0		76.0	5-145	2.60	41.3	
Flooranthene	34.2	2.00	•	\$0.0	•	68.4	28.6-110	3.57	17.4	
haptene	38.3	2.00	•	\$0.0		76.6	30.5-110	1.04	15.7	
łex achlorobenzene	34.5	2.00	•	50.0		69.0	22.6-110	0.578	16.3	
Hexachiorobutadiene	29.2	2.00	•	50.0	•	58.4	S-110	5.98	49.8	
Hexachlorocyclopentadiene	18.6	2.00	•	50.0		37.2	5-110	4.72	57. 7	
lexachioroeth m e	31.0	2.00	•	50.0		62.0	5-110	5.64	40.5	
ядско (1,2,3-сб) ругеве	39.8	2.00	•	50.0		79.6	5-150	7.03	82	
sopboruse	33.0	2.00	•	50.0		66.0	13.1-110	2.99	20.6	
-Mothylmaphthalone	31.2	2.00	-	50.0		62.4	21.9-110	4.69	21.2	
-Cresol	31.8	2.00	•	50.0		63.6	24.9-110	3.10	23.7	
n.p-Cresols	30.5	2.00	-	50.0		61.0	5-110	2.59	23.6	
laphthalene	29.9	200	•	50.0		59.8	28.5-110	4.58	20 4	
-Nirroamiline	38.6	10.0	-	\$0.0		77.2	11.3-118	0.519	23.1	
-Nitroandine	22.3	10.0	•	\$0.0		44.6	7.75-110	6.51	46.2	
-Nitroeniline	33.2	10.0	•	50.0		66.4	18.5-110	1.82	18.4	
Introbenzene	33.3	2.00	•	50.0		66.6	13.6-110	3.83	22.2	
-Nitropheso)	32.4	2.00	•	\$0.0		64.8	5-110	4.52	120	
-Nitrophenol	25.0	10.0	•	50.0		50.0	5-110	4_50	190	
I-Natrosodi-a-propylamine	36.8	2.00	•	50.0		73 6	14.6-110	3.73	21.5	
V-Nitrosodiphenylamine	33.0	2.00	•	50.0		66.0	19.1-110	1.20	13.7	
entachlorophenol	29.6	10.0	•	50.0		59.2	5-110	1.36	126	
Accumulations	37.4	2.00	-	50 0		74.8	36.3-110	0.268	12.2	
'henol	18.7	2.00	•	\$0.0		37.4	5-110	1.59	65.1	
угеле	48.2	2.00	•	50.0		96.4	27_2-126	4.26	35.6	
.2.4-Trichlorobenzene	29.7	2.00	•	50.0		59.4	11.1-110	4.28	30.8	
.4,5-Triculorophenol	37.5	10.0	-	50.0		75.0	5- <u>1</u> 10	4.43	121	
4.6-Trichlorophenol	38.4	2.00	•	50.0		76.8	5-114	3.58	157	
wrogate 2-Fluorophenol	44.2		•	99.8		44.3	10-70.3			
surrogate. Phenol-d6	31.2		•	99.8		31.3	10.8-41.4			
Surrogate: Nitrobenzene-dS	32.2		•	50.0		64.4	38.8-98.5			
Surrogate: 2-Fhorobiphenyl	34.0		-	50.0		68.0	38-89.3			
Surrogate: 2,4,6-Tribromaphenal	65.4		•	99.8		65.5	10-122			
Surrogaie: p-Terphenyl-d14	45.8		-	5 0 0		91.6	14.5-131			

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EOSL

Project: Former Ames Supply

351 W. Hubbard, Suite 401 Chicago IL, 60610 Project Number: 011332
Project Manager: Gerald Kraemer

Reported: 11/28/01 14:55

Notes and Definitions

Gl	The recovery of one or more analytes in the matrix QC (MS/MSD) associated with this sample is above the laboratory's
	established acceptance criteria. Refer to the included QC reports for more detail.

- G15 The relative percent difference (RPD) of one or more analytes in the matrix QC (MS/MSD) associated with this sample is above the laboratory's established acceptance limits. Refer to the included QC reports for more detail.
- The recovery of one or more analytes in the laboratory control QC (BS/BSD) associated with this sample is below the laboratory's established acceptance criteria. Refer to the included QC reports for more detail.
- One or more internal standard recoveries were above the method specified acceptance criteria.
- O4 The recovery for this analyte is below the laboratory's established acceptance criteria.
- Of The recovery for this analyse is above the laboratory's established acceptance criteria.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

Great Lakes Analytical

The results in this report apply to the samples unalyzed in accordance with the chain of custody document. This unalytical report must be reproduced in its entirety.

Andy Johnson, Project Manager

D--- 30 -630

03 December 2001

Gerald Kraemer EGSL 351 W. Hubbard, Suite 401 Chicago, IL 60610 RE: Ames Supply

Enclosed are the results of analyses for samples received by the laboratory on 11/30/01. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Andy Johnson Project Manager

Email: info@gialabs.com (847) 808-7776 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401

Chicago IL, 60610

Project: Ames Supply

Project Number: 011332

Project Manager: Gerald Kracmer

Reported; 12/03/01 12:31

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
PW-10	B111400-01	Water	11/30/01 09:20	11/30/01 11:00
MW-4	B111400-02	Water	11/30/01 09:50	11/30/01 11:00

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Andy Johnson, Project Manager

Page 1 of 9

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401 Chicago IL, 60610 Project: Ames Supply

Project Number: 011332 Project Manager: Gerald Kraemer

Reported: 12/03/01 12:31

Volatile Organic Compounds by EPA Method 8260B

Great Lakes Analytical

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PW-10 (B111400-01) Water	Sampled: 11/30/01 09:20	Received:	11/30/01	11:00					G1,G
Acetone	ND	10.0	ug/1	1	1120003	12/03/01	11/30/01	5030B/8260B	_
Benzene	ND	2.00	•	•		•		*	
Bromodichloromethane	ND	2 00	•	•	-	•	•	*	
Bromoform	ND	2.00	•	•	•	•	•	•	
Bromomethane	ND	2.00	-	•		•	*	•	
2-Butanone	ND	0.01	•	*		4	•	•	
Carbon disulfide	ND	2.00	. •	•	- 4	-	•		
Carbon tetrachloride	ND	2.00	•	•	**		•	• .	
Chlorobenzene	ND	2.00	-	•	-	•		•	
Chlorodibromomethane	ND	2.00	•	•	*	•	•	•	
Chiorocthane	ND	2.00	-		•	•	•	•	
Chloroform	ND	2.00	•	•	•	-	•		
Chloromethane	ND	2.00	•	•			•	-	
1,1-Dichloroethane	2.28	2.00	•	•			4	F	
1,2-Dichloroethane	ND	2.00	•			,		•	
1.1-Dichloroethene	ND	2.00	-	•	*		u	•	
cis-1.2-Dichloroethene	16.6	2.00	-	•		•			
trans-1.2-Dichloroethene	ND	2.00	4	•	•	•	•	•	
1,2-Dichloropropane	ND	2.00	•			14			
cis-1,3-Dichloropropene	ND	2.00	•	•					
trans-1,3-Dichloropropene	ND	2.00	•	•	•				
Ethylbenzene	ND	2.00	-		•			•	
2-Hexanone	ND	10.0		•	-		-	- .	
Methylone chlonde	ND	2.00	-		-				
4-Methyl-2-pentanone	ND	10.0	-		-		-	•	
Styrene	ND	2.00	•	•	•			*	
1.1.2.2-Tetrachloroethane	ND	2.00	•	**				P	
Tetrachloroethene	140	2.00	•	•	-				
Toluene	ND	2.00	-	•				•	
L.1.1-Trichioroethane	13.3	2.00	-	-					
1.1.2-Trichloroethane	ND	2.00	-		-			19	
Trichlorpethene	8.48	2.00	-	-	-			•	
Inchlorofluoromethane	ND	2.00		-	-	•		,-	
Vinyl scetate	ND	2.00	•	•		•	•	•	
Vinyl chloride	ND	2.00	-	-					
Total Xylenes	ND ND	2.00	•		•				
Surrogate: Dibromofbioromethi		97.6 %	011	-111				~	
Surrogate: 1,2-Dichloroethane-	-	103 %	91.1 85.1		-				
Surrogate: Tohiene-d8	W Y	98.8 %	95.1						
surrogate: 1 onene-a s Surrogate: 4-Bromofivorobenze		99.2 %	93.1 89.6			-			

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Andy Johnson, Project Manager

Page 2 of 9

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

Project: Ames Supply

351 W. Hubbard, Suite 401 Chicago IL, 60610 Project Number: 011332
Project Manager: Gerald Kraemer

Reported: 12/03/01 12:31

Volatile Organic Compounds by EPA Method 8260B

Great Lakes Analytical

Analyte	Result	Reporting Limit	Unita	Dilution	Betch	Prepared	Analyzed	Method	Nous
MW-4 (B111400-02) Water	Sampled: 11/30/01 09:50	Received:	11/30/01	11:00					G1,G
Acetone	ND	10.0	ug/l	1	1120003	12/03/01	11/30/01	5030B/8260B	
Benzene	ND	2.00	•	•	•	•	*	• •	
Bromodichloromethane	ND	2.00	•	•	•	**	*	• .	
Bromoform	ND	2.00	-	•	•	-	•	-	
Bromomethane	ND	2.00	-	•		₩	w	•	
2-Butanone	ND	10.0	•	•	•		•	•	
Carbon disulfide	ND	2.00	-	•		•	•	-	
Carbon tetrachloride	ND	2.00	•	•	•	Ħ	•	•	
Chlorobenzene	ND	2.00	•	•	•	*	•	•	
Chlorodibromomethane	ND	2.00	•	•		•	M	-	
Chloroethane	ND	2.00	•	•	•	•	10	•	
Chloroform	ND	2.00	-	•	•	•	•	~	
Chloromethane	ND	2.00	-	•	•	m	N		
1.1-Dichloroethane	ND	2.00	•			•	•	•	
1.2-Dichloroethane	ND	2.00	•	•	•		-		
1.1-Dichloroethene	ND	2.00	•	•		•		•	
cis-1,2.Dichloroethene	ND	2.00	•	•	•	-			
trans-1,2-Dichloroethene	ND	2.00	-	•	•	-	-	*	
1,2-Dichloropropane	ND	2.00	-	•	•	•		n	
cis-1,3-Dichloropropene	ND	2.00	•	-	-		*	**	
trans-1,3-Dichloropropene	ND	2.00	•	•	-		-		
Ethylbenzene	ND	2.00	-	•		•			
2-Hexanone	ND	0.01	-	•	•	•	-	••	
Methylene chloride	ND	2.00	•		•		-	10	
4-Methyl-2-pentanone	ND	10.0	•	•	•			n	
Styrene	ND	2.00	-	•	•	•		•	
1,1,2,2-Tetrachloroethane	ND	2.00	-	•		•		••	
Tetrachloroethene	ND	2.00		•	•	•	•	•	
Toluene	ND	2.00		•	•	•	-		
l,l,l-Trichloroethane	ND	2.00	-	•	•	•		п	
1,1,2-Trichloroethane	ND	2.00		-	•		-		
Frichloroethene	ND	2.00	•	•	•	•			
Trichlorofluoromethane	ND	2.00	•		•	•	-		
Vinyl acetate	ND ND	2.00	•	•	•		•	p.	
Vinyl chloride	ND	2.00		-	•	•	**	**	
Total Xylenes	ND	2.00	•	•	-	•			
Surrogate: Dibromoftuorometh		100 %	011	-111	•				 -
Surrogate: 1,2-Dichloroethane-		100 %		-111 -104	•			, - ,	~-
surrogate: 1,2-LACRIORGENANE- Surrogate: Toluene-48	4 7	99.6 %			-	•	,	- -	03
surrogate: 10tuene-20 Surrogate: 4-Bromoftuorobenza		100 %		-105 -105		*	-		

Gree Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Andy Johnson, Project Manager

Page 3 of 9

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401 Chicago IL, 60610 Project: Ames Supply

Project Number: 011332 Project Manager: Gerald Kraemer

Reported: 12/03/01 12:31

Volatile Organic Compounds by EPA Method 8260B - Quality Control Great Lakes Analytical

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1120003 - EPA 5030B (P/T)										
Blank (1120063-BLK1)				Prepared:	12/03/01	Analyzed	L 11/30/01			
Acetone	ND	10.0	ug/l							
Benzenc	ND	2.00	-							
Bromodichloromethane	ND	2.00	•							
Bromoform	ND	2.00	-							
Bromomethane	ND	2.00	*							
2-Butanone	ND	10.0								
Carbon disulfide	ND	2.00	-		•					
Carbon tetrachloride	ND	2.00	•							
Chlorobeazene	ND	2,00	•							
Chlorodibromomethane	ND	2.00	-							
Chloroethane	ND	2.00	•							
Chloroform	ND	2.00	•							
Chloromethane	ND	2.00	•							
1,1-Dichloroethane	ND	2.00	-							
1,2-Dichloroethans	ND	2.00	-							
1,1-Dichloroethene	ND	2.00	-							
cas-1,2-Dichloroethene	ND	2.00	•							
trans-1,2-Diohlaroethene	ND	2.00	•							
1,2-Dichloropropage	ND	2.00	•							
cis-1,3-Dichtoropropene	ND	2.00	•							
trans-1,3-Dichloropropene	ND	2.00	-							
Ethylbenzene	ND	2.00	•							
2-Hexanone	ND	10.0								
Methylene chlonde	ND	2.00	•							•
4-Methyl-2-pentanone	ND	100	•							
Styrene	ND	2.00	•							
1,1.2.2-Tetrachloroethane	ND	2.00	•							
Tetrachloroethene	ND	2.00	-							
Toluene	ND	2.00	•							
1,1,1-Trichloroethane	ND	2.00	-							
1,1,2-Trichloroethane	ND	2.00	•							
Trichloroethene	ND	2.00	•							
Trichlorofluoromethape	ND	2.00	•							
Vinyl acctate	ND	2.00	•							
Vinyl chloride	ND	2.00	•							
Total Xylenes	ND	2.00	•							
Surroguse: Dibromofluoromethane	47.7		. •	50.0		95.4	91.1-111	-		
Surrogate: 1,2-Dichloroethane-d4	51.1		•	50.0		102	85.1-104			

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analysical report must be reproduced in its entirety.

Andy Johnson, Project Manager

--- Email: info@glalabs.com (847) 808-7768 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401

Chicago IL, 60610

Project: Ames Supply

Project Number: 011332
Project Manager: Gerald Kraemer

Reported: 12/03/01 12:31

Volatile Organic Compounds by EPA Method 8260B - Quality Control Great Lakes Analytical

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1129003 - EPA 5030B (P/T)										
Blank (1124003-BLK1)				Prepared:	12/03/01	Analyzed	1: 11/30/01			
Surrogate: Toluena-d8	49.1	<u></u>	ug/l	50.0		98.2	95.1-105			
Surrogate: 4-Bromofluorobenzene	49.8		*	50.0		99.6	89.6-105			
LCS (1120003-BSI)	•			Prepared:	12/03/01	Analyzeo	1: 11/30/01			
Acetone	149	10.0	ນຂາ	50.0		298	10-194			
Benzene	57.3	2.00	•	50.0		115	84.9-115			
Bromodichloromethaee	58.9	2.00	•	50.0		118	74.3-130			
Bromoform	59.5	2.00	•	50.0		119	70.1-120			
Bromomethane	38.8	2.00	•	50.0		7 7.6	10-258			
2-Butanone	105	10.0	•	50.0		210	10-147			
Carbon disulfide	45.6	2.00	•	50.0		91.2	43.4-146			
Carbon tetrachloride	54.7	2.00	•	50.0		109	60.5-138			
Chlorobenzene	56.2	2.00	•	50.0		112	85.4-115			
Chlorodibromomethane	58.9	2.00	•	50.0		118	78.8-116			
Chlorocthane	90.2	2.00	-	50.0		180	10-455			
Chloroform	55.B	2.00	-	50.0		112	74.5-134			
Chloromethaus	43.1	2.00	•	50.0		86.2	78,7-128			
1,1-Dichloroethane	50.3	2.00	•	50.0		101	76.8-120			
1.2-Dichloroethane	56. 8	2.00	-	50.0		114	66.7-129			
1,1-Dichloroethene	57.1	2.00	•	50.0		114	72.7-125			
cis-1.2-Dickloroethene	55.0	2.00	•	50.0		110	87-123			
trans-1,2-Dichloroetheae	49.7	2.00	•	50.0		99.4	77.9-119			
1,2-Dichloropropune	57.0	2.00	•	50 0		114	88 3-115			
cis-1,3-Dichloropropene	58.5	2.00	•	50.0		117	81.2-120			
trans-1,3-Dichloropropene	63.5	2 00	•	50.0		127	75.2-126			
Ethylbenzese	58.2	2.00	•	50 0		116	84.3-119			
2-Hexanone	106	10 0	-	50.0		212	21.4-142			
Methylana chlonde	50.9	2.00	•	50.0		102	62.5-140			
4-Methyl-2-pentanone	65 5	10.0	•	50.0		131	38.2-141			
Styrene	57.0	2.00	•	50.0		114	86.6-117			
1,1,2,2-Tetrachloroethane	51.6	2.00	•	50.0		103	13.2-197			
Tetrachioroethene	54.1	2.00	•	50.0		108	76.6-120			
Taluene	59.7	2.00		50.0	•	119	86.3-120			
1,1,1-Trichlorocthane	50.7	2.00	•	50.0		101	63.5-146			
1,1,2-Trichloroethane	58.5	2.00	•	50.0		117	84.5-124			
Trichloroethene	53.6	2.00	•	50.0		107	51.4-153			
Trichlorofluoromethane	52.0	2.00	•	50.0		104	10-586			
Vinyl acetate	33.9	2.00		50 .0		67.8	10-346			

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Andy Johnson, Project Manager

Page 5 of 9

Email: info@glelebs.com (847) 808-7766 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401 Chicago IL, 60610 Project: Ames Supply

Project Number: 011332 Project Manager: Gerald Kraemer Reported: 12/03/01 12:31

Volatile Organic Compounds by EPA Method 8260B - Quality Control Great Lakes Analytical

	5	Reporting	77.34	Spike	Source	4/276	%REC	D.000	RPD	V
Analyto	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1120003 - EPA 5030B (P/I)						<u>.</u>			•	
LCS (1120063-BS1)				Prepared:	12/03/01	Analyzed	11/30/01			
Vinyl chloride	49.8	2.00	ug/l	50.0	-	99.6	71-120			
Total Xylenes	172	2.00	7	150		115	88.3-118			
Surrogate: Dibromofluoromethane	48.6		•	50.0		97.2	91.1-111			
Surrogate: 1,2-Dichloroethane-d4	50.7		•	50.0		101	85.1-104			
Surrogate: Toluene-d8	50.4		•	500		101	95.1-105			
Surrogate: 4-Bromofluorobenzene	52.5		•	50.0		105	89.6-105			
Matrix Spike (1120003-MS1)	Sou	rce: B11140	0-01	Prepared:	12/03/01	Analyzed	L 11/30/01			
Acetope	53.3	10.0	ug/l	50.0	ND	107	10-269			
Benzene	57.4	2.00	•	50.0	ND	115	71 4-115			
Bromodichloromethane	59.7	2.00	•	50.0	ND	119	65.3-134			
Bromoform	61.6	2 00	-	50.0	ND	123	54.6-132			
Bromounetizane	46.2	2.00	•	50.0	ND	92.4	10-176			
-Butanone	54.4	10.0	•	50.0	ND	109	10-201			
Carbon dusulfide	43.9	2.00	•	50.0	ND	87.8	23,4-143			
Carbon setrachloride	54.1	2.00	•	50.0	ND	108	26.3-133			
Chlorobenzene	54 7	2.00	•	50.0	N.D	109	77.4-108			
Chlorodibromomethane	59.7	2,00	•	50 0	ND	119	72.8-117			
Chloroethane	103	2.00	•	50.0	ND	206	10-293			
Chloroform	55.8	2.00	•	50.0	ND	112	70.8-124			
Chloromethane	50.7	2.00	•	50.0	ИD	101	61.3-109			
,1-Dichloroethane	55.0	2.00	-	50 0	2.28	105	63.3-114			
2-Dichloroothans	57.7	2.00	•	50.0	ИD	115	54.5-137			
1.1-Dichloroethene	51.4	2.00	•	50.0	ИD	103	36.1-115			
ris-1,2-Dichloroethene	70.0	2.00	•	50.0	16.6	107	64.8-129			
rans-1,2-Dichloroethene	48.8	2.00	•	50.0	ND	97.6	54.7-113			
,2-Dichloropropuse	57.7	2 00	-	50.0	ND	115	77.8-114			
zis-1,3-DicMoropropeue	58.8	2.00	•	50.0	ND	118	67.3-117			
rnos-1,3-Dichloropropene	65.4	2.00	-	50.0	ND	131	57.3-124			
Ethylbenzene	56.9	2.00	•	50.0	ND	114	68.3-111			
2-Hexanone	57 6	10.0	-	50.0	ND	115	10-225			
Jethylene chloride	53 4	2.00	-	50.0	ND	107	45.6-150			
-Methyl-2-pentanone	61.9	10.0	•	50.0	ND	124	10-208			
Styrene	56.2	2.00	-	50.0	ND	112	49.7-126			
1,1,2,2-Tetrachloroethane	58.0	2.00	•	50.0	ND	116	20.6-223			
Tetrachloroethene	157	2.00	•	50.0	140	34.0	45.1-113			
Tolucae	59.3	2.00	•	50.0	ND	119	71.3-118			
1,1,1-Trickloroethane	60.6	2.00	•	50.0	13.3	94.6	42.5-128			
1										

Great/Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Andy Johnson, Project Manager

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401 Chicago IL, 60610 Project: Ames Supply

Project Number: 011332 Project Manager: Gerald Kraemer Reported: 12/03/01 12:31

Volatile Organic Compounds by EPA Method 8260B - Quality Control Great Lakes Analytical

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1120003 - EPA 5030B (P/T)				-						
Matrix Spike (112 0 003-MS1)	So	urce: B11140	0-01	Prepared:	12/03/01	Analyzed	1: 11/30/01			
1,1,2-Trichloroethans	61.0	2.00	ug/l	50.0	ND	122	70.1-139			
Trichloroethene	55.6	2.00	-	50.0	8.48	94.2	53.5-106			
Trichlorofluoromethane	51.1	2.00	•	0.02	ND	102	10-417			
Vinyl acetate	51.2	2.00	•	50.0	ND	102	10-239			
Vinyl chlonde	54.0	2.00	•	50.0	ND	108	37.4-113			
Total Xylenes	172	2.00	•	150	ND	115	70.8-111			
Surrogate: Dibromoftworomethane	50.0		•	50.0		100	91.1-111			
Surrogate: 1,2-Dichloroethane-d4	53.0		•	50.0		106	85.1-104			
Surrogate: Tolwene-dB	51 4		-	50.0		103	95.1-16.5			
Surrogate: 4-Bromoftuorobenzene	53.5		•	50.0		107	89.6-105			
Matrix Spike Dup (1120003-MSD1)	Sa	erce: B11140	0- 01	Prepared:	12/03/01	Analyzer	d: 11/ 30 /01			
Acetone	48.6	10.0	ug l	50.0	ND	97.2	10-269	9.22	73.8	
Benzene	55.3	2.00	•	50.0	ND	111	71.4-115	3.73	19.1	
Bromodichloromethane	57.4	2.00	-	500	ND	115	65 3-134	3.93	15.6	
Brownoform	58.0	2.00	-	50.0	ND	116	54.6-132	6.02	36.2	
Bromomethane	50.2	2.00	-	50.0	ND	100	10-176	8.30	45.7	
2-Buzaone	49.5	10.0	•	50.0	ND	99.0	10-201	9.43	61.6	
Carbon dissulfide	44.7	2.00	-	50.0	ND	89.4	23.4-143	1.81	23.6	
Carbon tetrachloride	52.3	2.00	-	50.0	ND	105	26.3-133	3.38	26.2	
Chlorobenzene	51.9	2.00	•	50.0	ND	104	77.4-108	5.25	12.2	
Chlorodibromomethane	57.4	2.00	•	50.0	ND	115	72.8-117	3.93	23.9	
Chloroethane	107	2.00	•	50.0	ND	214	10-293	3.81	36.9	
Chloroform	54.4	2.00	•	50 .0	ND	109	70.8-124	2.54	10.6	
Chloromethane	45.0	2,00	•	50.0	ND	90.0	61.3-109	11.9	20.1	
_1-Dichloroethme	54.1	2.00	•	50.0	2.28	104	63.3-114	1.65	12.7	
2-Dichiorocthme	55.3	2.00	•	50.0	ND	111	54.5-137	4.25	27.2	
1.1-Dichlorosthme	55.7	2.00	•	50.0	ND	111	36.1-115	8 03	23	
ris-1,2-Dichloroethene	68.1	2.00	•	50.0	16.6	103	64.8-129	2.75	19.6	
rans-1,2 Dichloroethene	48.2	2.00	-	50.0	ND	96.4	54 7-113	1.24	17.4	
2-Dichloropropune	55 3	2.00	•	50.0	ND	111	77.8-114	4.25	16.4	
is-1,3-Dichloropropene	56.7	2.00	•	50.0	ND	113	67.3-117	3.64	15.7	
rans-1,3-Dichloropropene	62.8	2.00	•	50.0	ND	126	57.3-124	4.06	26.3	
Ethylbenzene	54.8	2.00	-	50.0	ND	110	68 3-111	3.76	13.5	
-Hexanone	52.3	10.0	•	50.0	ND	105	10-225	9.65	58.3	
Methylene chlonde	52.1	2.00	-	50 0	ND	104	45 6-150	2.46	11.4	
l-Mothyl-2-pentanone	57.2	10.0	•	50.0	ND	114	10-208	7.89	69.7	
ityrene	54 2	2 00	•	\$0.0	ND	108	49.7-126	3.62	18.6	

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Andy Johnson, Project Manager

Email: info@glalabs.com (847) 808-7766 FAX (847) 808-7772

EGSL

351 W. Hubbard, Suite 401 Chicago IL, 60610 Project: Ames Supply

Project Number: 011332

Project Manager: Gerald Kraemer

Reported: 12/03/01 12:31

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Great Lakes Analytical

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1120003 - EPA 5030B (P/T)										
Matrix Spike Dup (1120003-MSD1)	Source: B111400-01			Prepared:	12/03/01	Analyzed	± 11/30/01			
1,1,2,2-Tetrachloroethene	54.4	2.00	ug/l	50.0	ND	109	20.6-223	6.41	50.3	
Tetrachlorocthene	155	2.00	•	50.0	140	30.0	45.1-113	1.28	17.6	
Toluene .	56.4	2 00		50.0	ND	113	71.3-118	5.01	19.4	
1,1,1-Trichloroethene	60.2	2.00	•	50.0	13.3	93.8	42.5-128	0.662	18.4	
1,1,2-Trichloroethane	58.6	2.00	•	\$0.0	ND	117	70.1-139	4.01	32.5	
Trichloroethene	54.2	2.00	. •	50.0	8.48	91.4	53.5-106	2.55	20.9	
Trichlorofluoromediane	53.3	2.00	•	50.0	ND	107	10-417	4.21	29.2	
Vinyl acetate	42.7	2.00	•	50.0	ND	85.4	10-239	18.1	34.5	
Vinyl chloride	50.8	2.00	•	50.0	ND	102	37.4-113	6.11	23.5	
Total Xylenes	165	2.00	•	150	סא	110	70.8-111	4.15	12.4	
Surrogate: Dibromofluoromethane	50.6		-	50.0	·	101	91.1-111			
Surrogate: 1,2 Dichloroethane-d4	52.0		-	50.0		104	85.1-104			
Surrogate: Toluene-48	51.2		-	50.0		102	95 1-105			
Surrogate: 4-Bromofluorobenzene	53.2		•	50.0		106	89.6-105			

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Andy Johnson, Project Manager

Page 8 of 9

Email: info@glalabs.com (847) 808-77766 FAX (847) 808-7772

FOSL Project: Ames Supply
351 W. Hubbard, Suite 401 Project Number: 011332 Reported:
Chicago IL, 60610 Project Manager: Gerald Kraemer 12/03/01 12:31

Notes and Definitions

G1 The recovery of one or more analytes in the matrix QC (MS/MSD) associated with this sample is above the laboratory's established acceptance criteria. Refer to the included QC reports for more detail.

The recovery of one or more analytes in the matrix QC (MS/MSD) associated with this sample is below the laboratory's established acceptance criteria. Refer to the included QC reports for more detail.

O5 The recovery for this analyte is above the laboratory's established acceptance criteria.

DET Analyte DETECTED

ND Assign NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Great Lakes Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Andy Johnson, Project Manager

Page 9 of 9

CHAIN OF CUSTODY REPORT

1380 Busch Parkway Buffalo Grove, IL 60089-4505 (847) 808-7766 FAX (847) 808-7772 140 E. Ryan Road Oak Creek, WI 53154 (414) 570-9460 FAX (414) 570-9461

Client: E6.5L				Bill To:								TAT:	STO.	41	AY :	3 DAY 2 DAY LOAY SA HRS.							
Address: 35/ W.	Address:													S - TA	T is q	itical	DATE MODULES NEEDED						
,					1											TEMPERATURE UPON RECEIPT:							
Report to: Knymy Fax #: 212 755-7530				State & Phone #: () Program: Fax #: ()										Deliverable Package Needed: Air BH No. STD Other									
Project: Ams 5	7		7.		f Bott	les	/	3/	7	7	7	7	7	7	7	7	SAMPLE /						
Sampler: Kraemer		# 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Silk Silk	2/4	/	<u> </u>	reser 77	vative	/ / /		14	/ /	/ /	l., f		./		/	/ ,	<i></i>	NTHOL/		
PO/Quote #: 01/33	2	_/ & §		S. S	* /x	/g/		/a /a	. /4. /	/3/	(V)				1/1	/ /	/ /	/ /	\ \langle \\ \frac{3}{5}		S/ L	ABORA	TORY
FIELD ID, LOCA	TION	48	/ ×8	92	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$\\\$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		\ \$ /	<u>\$/-</u>	<u>Y</u>	_	/			//		\angle	∕8		<u>/</u>	ID NUN	1BER
1 PW-10	PIO:	1/2/21	9:20	Weter		3			3					-					Ì		RII	400	0-01
2 MW-4	· · · · · · · · · · · · · · · · · · ·	11/		11.	1		1	11		弋	>	† †		+	\dashv	\top	+	+		1	1-21-1	-1-11-21	400
	PIO:	1/30/01	9:50	Mater		3			_3						\perp		<u> </u>		<u></u>				(02
3								1										-					
4	PID:				╌┼╌	+	-	+-+			-	╁╾╁		\dashv	\dashv	+	+-	+	-	\vdash			
	PID:	-			1					Ì			l	1				}					•
5		1		 	ff	1		$\dagger \dagger$		十	†			十	\dashv	十	十	+-	 	Н	i		
	PID:	1									1.		ł										
6											T			Т	·		T						
	PIO:			<u> </u>	$oxed{oxed}$	Ш		\perp					_		\perp			丄	ـــــ				
7		4					- 1	11									1		1				
8	PID:			 	╁╌╁╌	+		+-1		+-	╁	┝╌┥	\dashv	\dashv	\dashv	+	+	┿	ŀ	-	 		•
	PID:	1 1											ľ				1	1					
9		1		 		11	1	1-1	_	†	\vdash	\Box	_	十		+	+	十	╁┈		 		
L	PID:	1																					
10				}																			
DE INCOMOLICA	PID:	لرجيل		1	Ш	Щ			<u> </u>		<u> </u>	Ļ		ــــــــــــــــــــــــــــــــــــــ			1		<u>_</u> _	\sqcup			20.20
DE GLACIE	11-20-01	REGERATO	TEL	7	_	7 p.	13 Q 100	RE		JISHE				Z		\SQ.		B	X		Jb.	11	30∙01 1∂ /4
RELINQUISHED	0.472	RECEIVED	-			1	,:.	RE	LINOL	IISHE	0				5 477		REC	ENE	D	7	V		(4) (P)
·	Test.	<u> </u>				1/4/	<i>i</i> c	\perp							7///	:							first)
COMMENTS:					,																		
																			\neg	PAG	Ε		OF